

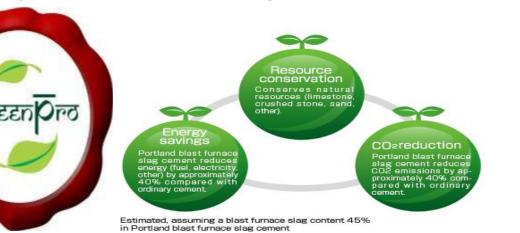
Concrete Durability and Sustainability with slag based product

8th - May-2020

Durability & Sustainability of Concrete slag based product

Improved durability and sustainability properties of concrete having slag based product

- ✓ Green Products Ecofriendly
- ✓ Strength Compressive & Flexural Strength
- ✓ Heat of Hydration
- ✓ Chloride Ion Permeability & Chloride Migration (RCMT)
- ✓ Water Impermeability
- ✓ Abrasion resistance
- ✓ Water absorption of concrete
- ✓ Carbonation
- \checkmark Corrosion resistance
- ✓ Sulfate resistance
- ✓ Alkali Aggregate Reaction



India's First Green Cement – Maintaining the Eco

 JSW Slag Products (PSC / Concreel HD) - Eco Friendly
 The products of BF Slag are highly regarded as environment friendly materials that can protect the environment by limiting the exploitation of natural resources and reduce the amount of energy consumed in the mining of natural Resources.

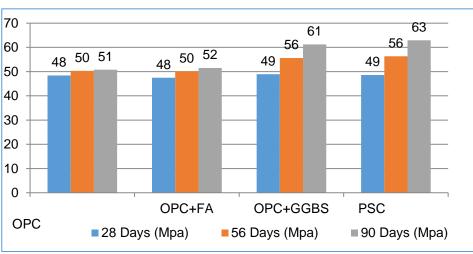
ENVIRONMENTAL PRODUCT DECLARATION OF AVERAGE PSC CEMENT

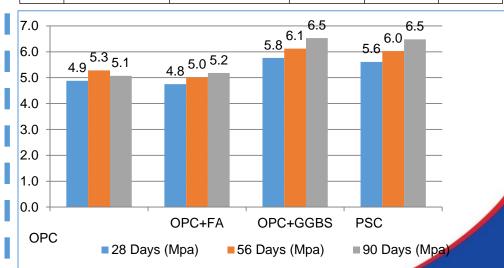
ISO 14020:2006, ISO 14025:2006, ISO 14040:2006, ISO 14044:2006, EN 15804:2012, EN 16908:2017

EPD registration number: Publication date: Validity date: Geographical scope: S-P-01414 2019-10-11 2024-10-10 India

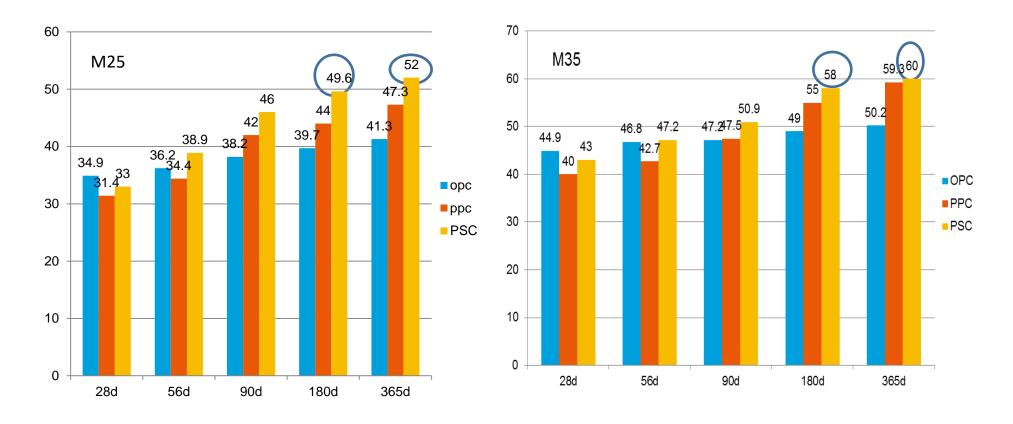
Minimum Utilization of Natural Resources

Electricity





Concrete Compressive & Flexural Strength Development



Concrete Compressive strength M40 - W/C 0.32					Concrete Flexural strength M40 - W/C 0.32				2		
Sr No	Description	Cementitious Content, Kg/Cum	28 Days (Mpa)	56 Days (Mpa)	90 Days (Mpa)	Sr No	Description	Cementitious Content, Kg/Cum	28 Days (Mpa)	56 Days (Mpa)	90 Days (Mpa)
1	OPC	450	48.4	50.3	50.8	1	OPC	450	4.9	5.3	5.1
2	OPC + Fly Ash (21%)	470	47.5	50.1	51.5	2	OPC+FA (21%)	470	4.8	5.0	5.2
3	OPC+ GGBS (40%)	470	48.9	55.6	61.2	3	OPC+GGBS (40%)	470	5.8	6.1	6.5
4	PSC	470	48.6	56.3	62.9	4	PSC	470	5.6	6.0	6.5

Compressive Strength development of Concrete

<u>PSC Based</u> Concrete always shows higher strengths beyond 28 days in comparison to those made with <u>OPC Concrete</u> and <u>Fly Ash Concrete</u>.

Source: CivilAid Laboratory , Bangalore

Heat of Hydration

Comparative Heat of Hydration					
Sr No.	Heat of hydration (Kj/Kg) at	OPC Cement	PPC Cement	PSC Cement	
1	3 Days	274.28	219.42	66.68	
2	7 Days	853.45	663.31	228.46	

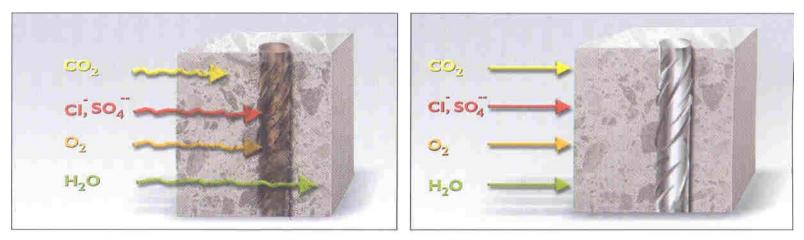
Source – JSW Cement lab Dolvi

JSW PSC Heat of Hydration-7 days- 232 kj/kg Tested at- NCCBM Ballabhgarh

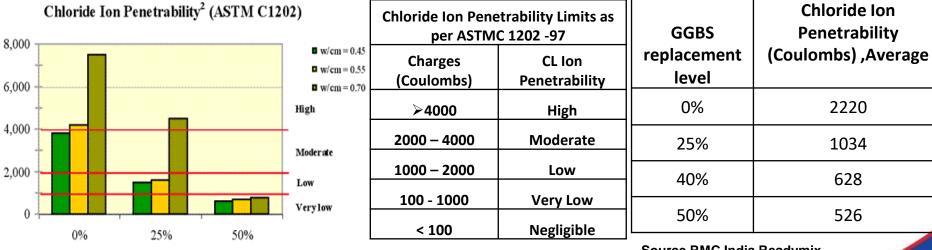
TESTING LABORATORIES

TEST REPORT

Customer Address	J5W CENTRE	NT LIMITED E, BANDRA KURLA COMPLEX, F 0051, MAHARASHTRA	BANDRA (EAST),		: ITL/001385 : 05/04/2018
Reference	NIL, AGAINS	ST MALL, DTD.09/03/2018			
Sample	Said to be	Portland slag Cement			
Identification	PSC				
Condition of Sample	UnSealed wi	ith ID Tag			
Date of Receipt	12/03/2018		Laboratory Mar	k -	ITLL3053/1/1
Period of Testing	14/03/2018	- 04/04/2018			
Tested for Conformity to					


No	Test Name	Test Method	Test Results	-
1	Heat of Hydration at 7Days	1S:4031(Pt-9):1988	232 KJ	1/Kg
	**************************************	F THE TEST REPORT	******	
~	-			

HOV


- Results given above refer only to the sample supplied.
 The Report is being issued on the specific understanding that NCB will not in any way be
- involved in any action following the interpretation of the above results.
- This report shall not be reproduced except in full without written approval from NCB.
 Tested Sample shall be retained for 90 days after reporting the results.
- This report does not imply that the sample/material is approved or endorsed by NCB or NABL.

Chloride Ion Permeability & Chloride Migration (RCMT)

Corrosion of steel in OPC

Prevention of corrosion of steel in PSC

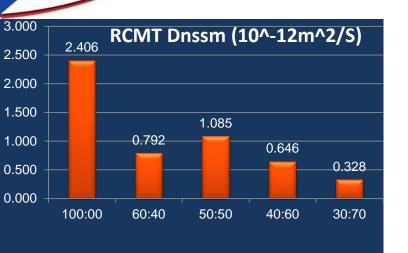
Figure 2: Effect of Slag Cement on Concrete

Slag Cement Replacement of Type I Portland

Charge Passed, Coulombs

Source RMC India Readymix

2220


1034

628

526

Chloride Migration (RCMT)

Reference : - IIT Mumbai

Project specification-Mumbai Trans Harbour Link for chloride migration test NT Build 492

Non-steady state migration coefficient (x10 ⁻¹² m ² /s)	Concrete quality
<2	Very good
2-8	Good
8-16	Normal
>16	Poor

For Substructure, Chloride migration coefficient shall be less than $2x10^{-12}m^2/s$. For superstructure, Chloride migration coefficient shall be (2-8) $x10^{-12}m^2/s$

Results achieved less than $2 \times 10^{-12} \text{ m}^2/\text{s}$ with GGBS replacement of 60% in M45 Pile & Pile Cap at MTHL project

Water Impermeability , Abrasion resistance, JSW water absorption

POTENTIAL USE OF GGBFS AS A SUPPLEMENTRY CEMENTITIOUS MATERIAL IN CONCRETE (IIT Mumbai Project code: <u>15JSWC001</u>)

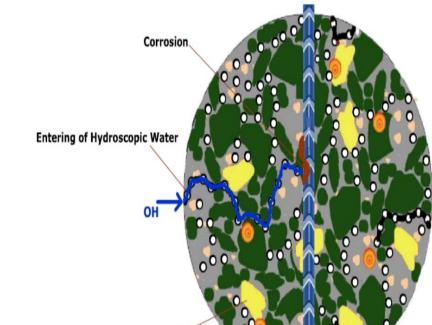
WATER PERMEABILITY RES ULT** – conforming to DIN 1048						
ТҮРЕ	GGBS Replacem ent Level	Mean mm				
OPC	0%	21				
OPC+GGBS	25%	18				
OPC+GGBS	40%	15				
OPC+GGBS	50%	10				

	COMBINA	ATIONS		Density		Setting Time		DURABILITY TESTING	
S.No.	Cement	Slag	W/B	Fresh	Hardened	Initial	Final	Abrasion Resistance	Water Absorption
	(%)		K	Kg/ m3	Minı	ıtes	(% mass loss)	(%)
1	60	40	0.34	2655	2464	398	512	0.180	2.50
2	50	50	0.34	2650	2443	353	467	0.179	3.12
3	40	60	0.34	2640	2468	309	464	0.196	2.88
4	30	70	0.34	2674	2430	331	471	0.169	1.82

**Source RMC India Readymix

Accelerated Carbonation Test

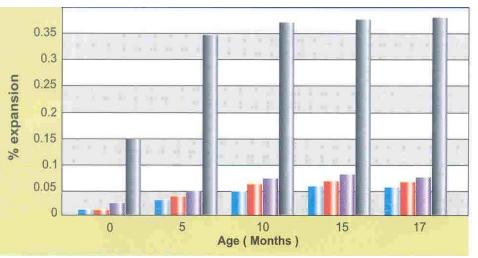
POTENTIAL USE OF GGBFS AS A SUPPLEMENTRY CEMENTITIOUS MATERIAL IN CONCRETE (IIT Mumbai Project code: <u>15JSWC001</u>)


Carbonation Depth of concrete				and the second second
Mix Ration	28 Days	56 Days		
OPC:GGBS	(mm)	(mm)		
100:00	15.00	11.50		The set of the set
60:40	6.70	4.20	Contraction of the second s	and the second se
50:50	12.30	5.30		
40:60	8.00	7.30		
30:70	9.70	8.30	(Left side) Carbonation at 28 days [60:40]	(Right side) Carbonation 56 days [60:40]

Portland slag cement/GGBS lead to increase electrical resistivity of concrete and reduce diffusivity of chloride ions from outside. The resistance to corrosion of reinforced steel in concrete is enhanced due to less proportion of chloride ions available in pore solution.

Corrosion: Fe⁺⁺ + 2(OH)⁻ ----- Fe(OH)₂ + Rust

Cement	Diffusivity 10 ⁻⁹ Cm ^{2/g}
OPC	44.7
PPC (70:30)	14.7
PSC (45:55)	4.10



Ca(OH)₂

Alkali Aggregate Reaction

When a critical amount of reactive aggregate is present, sufficient gel can be formed to cause disruptive expansion and cracking of the concrete.

Daqing Railway Bridge, China

(40%)+GGBS (60%)
(50%) +GGBS(50%)
(60%) +GGBS(40%)
(100%)

M40 – Total cementetious content- 535kg/cum , Project site -Jamnagar Gujrat. concrete tested at Tested at - NCCBM Ballabhgarh, Aggregate used in study were alkali active , arranged by NCCBM

Thanks