Durability of Special Concretes

Dr. R. V. Ranganath Professor, Department of Civil Engineering, BMS College of Engineering, Bengaluru -19 <u>rvranganath.civ@bmsce.ac.in</u>, rangarv@yahoo.com

Special concretes

Concrete made for special purposes of application with specific property enhancement

CONVENTIONAL CONCRETE Code specified *prescription* for mix design

SPECIAL CONCRETE Engineered mix design with relevant *performance* criteria

What makes concrete *Special*?

Why Special concretes ?

Increasing High Rise Buildings (HRBs) and Urban Infrastructures

Increasing market demand for High strength concrete (>60MPa) grades.

Dependency on concrete of Medium strength (30 to 50 MPa) and <u>unjustified consumption</u> of valuable fresh natural resources..

Demand for *performance specific concrete* from different aspects of construction.

High Performance Concrete

-SCC- High strength concrete- UHPC/Micro-concrete-

Dr.RVR, BMSCE.

Importance of concrete with enhanced MOE and Flexural Toughness

Application benefits of Durable concrete

- Special concrete (HSC/HPC/UHPC) with its enhanced Durability is likely to result in *less maintenance* and *longer service life*.
- Considering the life-cycle costing, the long-term economic benefits are likely to offset the premium costs for initial construction.

6

IS 16700: 2017

- IS 16700:2017- Criteria for Structural Safety in tall buildings outlines concern over the limitations of special concrete with strength >70 MPa.
- Material selection, Brittleness, Autogenous shrinkage, Creep and Durability evaluation is stressed to be of importance.
- The minimum grade of concrete shall be M 30. b) In view of the twin advantages of high-strength concrete in reducing the section sizes and percentage of steel reinforcement in structural elements, such concrete with grades ranging from M 45 to M 70 shall be used, wherever essential. When higher grades are required, the designer shall ensure through testing that such concretes shall have a minimum crushing strain in compression of 0.0020. Grades higher than M 70 (up to M 90) shall be used with utmost caution under the guidance and supervision of a recognized subject expert in concrete technology with specified values for parameters of modulus of elasticity, shrinkage, creep and durability.
- f) High strength concretes are quite sensitive to changes in properties of ingredients, variations in mix proportions and testing procedures. Hence, special efforts shall be taken to enforce strict quality assurance (QA) and quality control (QC) during production and testing of such concrete. The contractor/RMC

Durability indices for Special concretes

IS 16700: 2017

- Rapid Chloride Permeability Test (RCPT)
- Water Permeability
- <u>Shrinkage</u>

- k) Concrete used in tall building construction shall be durable. For ensuring long-term durability, concrete shall satisfy the following test criteria:
 - 1) Rapid chloride ion permeability test in,
 - i) *Foundations* Not more than 1 000 Coulomb.
 - ii) Superstructure Not more than 1 500 Coulomb.
 - 2) Water penetration test in,
 - i) Foundations 15 mm Max.
 - ii) Superstructure 20 mm Max.

Shrinkage and its relevance in Special concrete

- The rate of volume change in concrete is a complex phenomenon with important influence on the resulting performance, especially durability of concrete.
- From a practical viewpoint, the importance of shrinkage in concrete relates mainly to cracking potential.
- Autogenous shrinkage and Drying shrinkage rates influence on durability aspects.

Shrinkage stress related cracking potential of concrete ASTM C-1581 classification

TABLE X1.1 Potential for Cracking Classification

Net Time-to-Cracking, Average Stress Rate, S Average Stress Rate, S Potential for *t_{cr}*, days (MPa/day) (psi/day) Cracking $0 < t_{cr} \le 7$ $S \ge 0.34$ $S \ge 50$ High $25 \le S < 50$ $7 < t_{cr} \le 14$ $0.17 \le S < 0.34$ Moderate-High $14 t_{cr} \le 28$ $0.10 \le S < 0.17$ $15 \le S < 25$ Moderate-Low $t_{cr} > 28$ S < 0.10 S < 15 Low

Shrinkage specific parameters for Concrete IS 1343:1980

Grade of Concrete	Autogenous Shrinkage $(\varepsilon_{ca} \times 10^{6})$	$f_{ m ck}$ MPa	Unrestrained Drying Shrinkage Values ($\varepsilon_{cd} imes 10^6$) for Concrete with Portland Cement, for Relative Humidity	
M 30	35		50 Percent	80 Percent
M 35	45	(1)	(2)	(3)
M 45	65	25	535	300
M 50	75	50	420	240
M 60	95	<u>75</u>	330 The scalarse for the other	190

NOTE — The values for the other designated grades may be obtained by interpolation.

Role of SCMs in Durability of Special Concrete

- Supplementary Cementitious Materials (SCMs) are essential part of durable Special concrete now.
- Modern Processing techniques have made way for new variants of SCMs and better-quality Micro fine Mineral admixtures (MMAs) and Nano mineral admixtures (NMAs)

Common Mineral admixtures used in HSC [Source: National Ready Mixed Concrete Association (NRMCA)

- Particle size distribution of SCMs for Improved packing efficiency of Binder system.
- Finer particles occupying voids left by larger particles.

Particle Morphology of finer SCMs to assist pore refinement of hydrated system

Influence of micro-cracking and Interfacial Transition Zone on transport properties

• The microcracks and continuity of porous phases have a significant influence on permeability, which increases the transport property of concrete by up to a factor of 30.

Durability frame work: ICI handbook on Concrete Durability

For proper selection of the type of SCM or a combination of different SCMs and the % replacement of ordinary Portland cement by SCM(s), it is suggested that initial lab trials are essential to assess both the compressive strengths and durability parameters at different ages.

Mix design approach for Special concrete

• Self compacting High strength concrete;

28 day target strength in range of 80 to 100 MPa., in line with IS 16700 specifications.

- Two set of control mixes with Only OPC as binder and GGBS as primary SCM to replace OPC.
 - Target Performance: 28 day strength and Durability
- Ternary blend system with UFS and UFFA: (2 to 12%wt. use)
 - Target Performance: High early strength, 60MPa (within 7 days).

Application areas: Tall buildings, Pre cast industry.

- Quaternary blend with Ultra fine silica (0.5 to 2 %wt. of OPC)
 - Target Performance: High early strength, 30MPa (within 24 hours).

Mix design approach for HSC

• Aggregate packing approach

Paste volume optimization- by multi mineral blend cementitious system

Details of Primary concrete mixes

Mix ID	Paste Volume (Vp)	Aggregate volume (Vag)	Vag/Vp	OPC in kg/m ³	w/c	Water in kg/m ³	SP, %wt of OPC
PM1	0.30	0.70	2.33	529	0.25	132	0.7
PM2	0.32	0.68	2.12	563	0.25	141	0.7
PM3	0.34	0.66	1.93	600	0.25	150	0.7
PM4	0.36	0.64	1.77	634	0.25	158	0.7
PM5	0.37	0.63	1.70	652	0.25	163	0.7
PM6	0.38	0.62	1.63	670	0.25	167	0.7
PM7	0.39	0.61	1.56	686	0.25	171	0.7
PM8	0.40	0.60	1.50	705	0.25	176	0.7
PM9	0.42	0.58	1.38	740	0.25	185	0.7
PM10	0.44	0.56	1.27	775	0.25	194	0.7

10 mixes following incremental Paste volume with OPC as binder in the set proportion of Aggregate combination.

Optimal mix and range of paste volume selected by evaluating satisfactory target strength parameter by 28 days.

Details of Binary mixes

Mix	OPC kg/m ³	GGBS kg/m ³	Total binder	w/b	Water kg/m ³	Vp	Vag	SP, %wt. of b	% OPC	%GGBS
C1G1	350	266	616	0.25	154	0.36	0.64	0.7	56.8	43.2
C1G2	350	282	632	0.25	158	0.37	0.63	0.7	55.4	44.6
C1G3	350	299	649	0.25	162	0.38	0.62	0.7	53.9	46.1
C1G4	350	315	665	0.25	166	0.39	0.61	0.7	52.6	47.4
C1G5	350	332	682	0.25	170	0.40	0.59	0.7	51.3	48.7
C2G1	400	219	619	0.25	154	0.36	0.64	0.7	64.6	35.4
C2G2	400	235	635	0.25	159	0.37	0.63	0.7	63.0	37.0
C2G3	400	252	652	0.25	163	0.38	0.62	0.7	61.3	38.7
C2G4	400	268	668	0.25	167	0.39	0.61	0.7	59.9	40.1
C2G5	400	285	685	0.25	171	0.40	0.59	0.7	58.4	41.6
C3G1	450	172	622	0.25	155	0.36	0.64	0.7	72.3	27.7
C3G2	450	188	638	0.25	159	0.37	0.63	0.7	70.5	29.5
C3G3	450	205	655	0.25	163	0.38	0.62	0.7	68.7	31.3
C3G4	450	222	672	0.25	168	0.39	0.61	0.7	67.0	33.0
C3G5	450	238	688	0.25	172	0.40	0.60	0.7	65.4	34.6

15 mixes- at constant w/b ratio and varying proportion of OPC to GGBS for required Paste volume;

OPC restricted at 3 quantities 350, 400 and 450 kg/m³

Optimal mix, for ternary blending, selected by evaluating satisfactory target strength parameter by 28 days.

-- Minimum of 400kg/m^3 necessary for HSC > 80 Mpa --

Comparison of Primary and Binary optimal mixes for Specific High performance Criterions.

Mix PM6 and Mix C2G2 were selected based on the compressive strength observations for evaluating other selected HPC characteristics.

Compressive strength parameters for evaluated mixes

- Strength criteria was satisfactorily achieved for both control mixes
- GGBS replacing OPC clearly indicates reduction in early strength development and improvement beyond 28 days compared to only OPC concrete mix.

Micro mineral admixtures role

• For the intended performance criteria of High early strength development: UFS seemed to be better option

Nano mineral admixtures role

• Ultrafine Silica blended with Ultra fine slag for potential early strength enhancement-within 24 hours

-- The concern now is for durability aspects--

Dr.RVR, BMSCE.

Durability studies

Important Durability indices for special concrete mixes

- RCPT
- Water Permeability
 - Under high pressure
 - Capillary rise
- Shrinkage behaviour

Durability indices: For Primary and Binary blend system

RCPT

Mix ID	Binder	Avg. charges passed, Coulombs	Chloride ion penetrability class as per ASTM C1202	
PM6	OPC	1145	Low	
C2G2	OPC+ GGBS	610	Very low	

Mix ID	Average. Water penetration, mm
PM6	11.2
C2G2	8.4

Water Permeability

Durability indices: For Ternary and Quaternary blend system

Water Permeability

Mix ID	Binders	Avg. charges passed, Coulombs	Chloride ion penetrability
C2G2	OPC+ GGBS	610	Very low
TUS-6	OPC+ GGBS+UFS	402	Very low
QSS-1	OPC+ GGBS+ UFS+UFSi	240	Very low

	Mix ID	Binders	Avg. Water
			penetration, mm
	C2G2	OPC+ GGBS	8.4
	TUS-6	OPC+ GGBS+UFS	5.9
	055 1	OPC+GGBS+	2 5
	QSS-1	UFS+UFSi	2.5
BMSCE	Ξ.		28

Sorptivity test

- Soprtivity coefficients, both initial and secondary, reduced to considerable extent for ٠ replacement of OPC with GGBS.
- Indicative of reduction in transport mechnism for ingress of external agents into ٠ concrete matrix

Sorptivity test Ternary and Quaternary blend mixes

Mix ID	Initial Sorptivity Coefficient, $\times 10^{-6} \text{ mm/s}^{0.5}$	Secondary Sorptivity Coefficient, $ imes 10^{-6} \text{ mm/s}^{0.5}$
C2G2	1391	272
TUS-6	1013	214
QSS-1	857	162

Sorptivity coefficients of optimal mixes.

*Shamanth and R V Ranganath, CBM, 2023

Dr.RVR, BMSCE.

Shrinkage behaviour at early age: up to 7 days

Net shrinkage strain for drying period: C2G2

Dr.RVR, BMSCE.

20

10

0.0

0.5

1.0

1.5

Vt in days

2.0

2.5

3.0

Shrinkage behaviour at early age

- Shrinkage induced potential risk of cracking increases with multi mineral blend system with a target of *High early compressive strength*.
- In particular, Autogenous shrinkage is of concern when ultra fine mineral admixtures are used.
- Early curing practice could be a remedy to ensure overall performance of concrete

Microstructure refinement by secondary hydration and pore filling ability

Age Mix	1 day	7 day	28 day
OPC + GGBS	SEM HV: 10.0 kV WD: 15.86 mm UEGA3 TESCAN SEM MAG: 10.00 kx Det: SE 5 µm	SEM HV: 10.0 kV WD: 13.83 mm LIII VEGA3 TESCAN SEM MAG: 10.0 kx Det: SE 5 µm VEGA3 TESCAN	SEM HV: 10.0 kV WD: 13.99 mm VEGA3 TESCAN SEM MAG: 10.0 kx Det: SE 5 µm
OPC + GGBS + <u>UFFA</u>	SEM HV: 10.0 kV WD: 13.97 mm	SEM HV: 10.0 kV WD: 12.74 mm SEM MAG: 10.0 kX Det: SE	SEM HV: 10.0 kV WD: 13.01 mm LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Improvement at ITZ for multi-mineral blend resulting in better bonding integrity of Hydrated paste (HP) and Aggregates (AG)

Dr.RVR, BMSCE.

Case study-1

Construction of Data Centre, Whitefield, Bengaluru. Client: M/s. Bearys Properties and Developments Pvt Ltd. Performance Requirement: M60 grade and High workability **Suggested option:**

Self Compacting Concrete

Activities conducted:

- Mix design development using Ggbs
- Testing for fresh properties SCC (J-ring, V funnel, L box)
- Durability evaluation: Water Permeability test.

35

Case study-2

 Construction of Auditorium Block, PES south campus, Bengaluru.

Client: M/s. PES Constructions.

Performance Requirement: M50 grade and High workability, Temp control.

Element details: RC Beams of 1.2 m x 1.9 m sides and 38 m length.

Suggested option:

Self Compacting Concrete with 40% OPC replaced by GGBS

Activities conducted:

Mix design development
 Thermocouples fixed
 at various pre-determined
 locations for monitoring
 concrete temperature
 during hydration.

Dr.RVR, BMSCE.

Peak Ambie	nt temperature	23°		
Thermocouple depth from the top surface	Thermocouple ID	Peak temperature °c	Time for Peak temperature	Thermal gradient
250 mm	T3C3, 600mm from surface	59.2	31 st hour	36.2
500 mm	T3C2, 600mm from surface	68	31 st hour	45
950 mm	T1C2, 150 mm from surface	61.3	30 th hour	38.3
950 mm	T1C3, 150 mm from surface	59.1	31 st hour	36.1
950 mm	T1C4, 150 mm from surface	62.5	32 nd hour	39.5
950 mm	T2C1, 300 mm from surface	64.4	31 st hour	41.4
950 mm	T2C2, 300 mm from surface	68.7	30 th hour	45.7
950 mm	T2C3, 300 mm from surface	67.1	30 th hour	44.1
950 mm	T2C4, 300 mm from surface	64.3	31 st hour	41.3
1400mm	T3C4, 600 mm from surface	69.1	34 th hour	46.1
1650 mm	T3C5, 600 mm from surface	61.2	34 th hour	38.2

Case study-3

 JST Param, Magadi road, Bengaluru. Client: M/s. ANP-PMC ; Sundaram Architects; SV Enterprises. Performance Requirement: M60 grade , High workability, Low shrinkage

Element details: Large span thin Shell structure of 50 mm thickness. Span: 75 m x 75 m Peak cantilever height: 22.5 m

Suggested option:

Quaternary blend concrete system with inclusion of Ultrafine slag and Microsilica. Maximum aggregate size restricted at 6.3mm Self Compacting Concrete with flow retention up to 2 hours.

Durability evaluation suggested: Shrinkage potential, Water permeability

Activities conducted:

- Mix design development
- Strength evaluation and Flow parameters under progress
- Mock trials in progress at site for preparedness.

• Overview of the concrete shell element

Work under progress

Dr.RVR, BMSCE.

Summary

- Durable structures needed for long term benefits.
- Sufficient options of SCMs/UFMAs and chemical admixtures now available for proportioning performance specific concrete mixes.
- Change in approach needed towards durability oriented design.
- Training the engineers and related workforce for understanding the necessities of special concrete is crucial in realizing the specific properties at site.

