



### Performance Specifications in Projects, and Proposed Inclusion in IS456

#### Manu Santhanam

Professor, Civil Engineering, and Coordinator, Centre of Excellence on Technologies for Low Carbon and Lean Construction (TLC2) IIT Madras

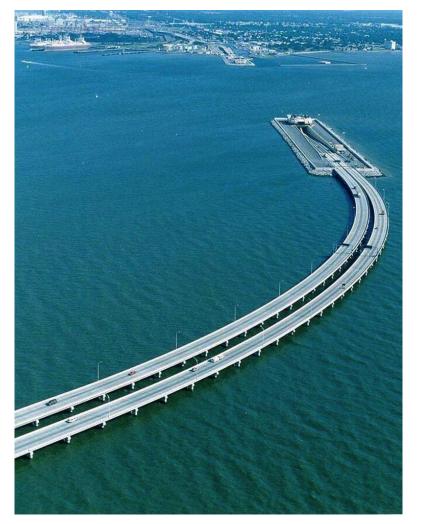
> Workshop on ICI Concrete Durability Handbook Bangalore, Apr 29. 2023





- Examples of performance specs in major construction projects (Courtesy: Dr Sivakumar Kandasami, L&T Construction)
- Proposed IS456 inclusions for durability design (Courtesy: Dr V V Arora, Former Dy. Director NCCBM, Chairperson, IS456 Materials committee)




# Durability specifications in construction projects

- Oresund link (Denmark Sweden)
- Confederation bridge (Canada)
- New Panama Canal
- Metros Riyadh, Doha, Chennai
- Statue of Unity

(Source: https://www.google.com/search?rlz=1C1EKKP\_enIN776IN776&q)

Oresund Link

- 16 km long Copenhagen to Malmo;
  3 components tunnel, dredging and reclamation, and bridge
- 100 year design service life achieved with Cementitious contents of 345 – 450 kg/m<sup>3</sup>!! The w/b ranged between 0.32 and 0.42
- For tunnel ternary blend with fly ash and silica fume
- Particle packing for aggregates









- 12.9 km long multi-span box girder structure
- Apart from seawater attack, freezethaw and abrasion also!
- 100 year design life
- Low alkali cement with fly ash and silica fume
- w/b 0.25 to 0.36; air entrainment
- Target chloride diffusion coefficient =3.5x10<sup>-13</sup> m<sup>2</sup>/s



#### (Source:

https://www.google.com/search?rlz= 1C1EKKP\_enIN776IN776&q)





- 5 million tonnes of concrete; 50 60 MPa
- RCPT limit of 1000 C
- Max temperature restriction
- On-site resistivity testing used for quality monitoring
- Resistivity of 200 ohm cm benchmarked to RCPT of 1000 C



(*Source:* Civil Engineering, ASCE, June 2017)

- 400 km away from the sea – carbonation mechanism considered
- Carbonation depth after 100 year exposure estimated to be 35 mm, which was less than the cover provided
- No risk of chemical attack

| Element                                            |                             | Concrete<br>Grade    | Cem      | nent                     |            | water/cem<br>ent ratio |  |
|----------------------------------------------------|-----------------------------|----------------------|----------|--------------------------|------------|------------------------|--|
| Precast columns and beams                          |                             | C50                  | 100% OPC |                          | 0.31-0.42  |                        |  |
| Bridge piers, column walls and slab                |                             | C40                  |          | 100% OPC                 |            | 0.31-0.42              |  |
| Viaduct segments                                   |                             | C50                  | 959      | 5% OPC + 5% micro silica |            | 0.31-0.42              |  |
| Viaduct EJ segments and<br>superstructures in-situ |                             | C50                  | 959      | 5% OPC + 5% micro silica |            | 0.31-0.42              |  |
| Standard                                           | Test                        |                      |          | Unit                     | Acceptance | Limit                  |  |
| AASHTO T277                                        | Rapid Chloride Permeability |                      | ty       | Coulombs 1500            |            |                        |  |
| DIN 1046                                           | Water Permeability          |                      |          | mm                       | 10         | 10                     |  |
| BS1881 Part 122                                    | Absorption after 30 minutes |                      | es       | %                        | 1.5        | 1.5                    |  |
| BS1881 Part 5                                      | ISAT                        |                      |          | mlm².s                   | 0.05       | 0.05                   |  |
| Standard                                           |                             | Test                 |          | Unit                     | Accen      | tance Limit            |  |
|                                                    |                             | bonation of Concrete |          |                          | Measured   |                        |  |







- 120 year design life
- Risk of carbonation and chemical attack
- Cover adopted 50 to 75 mm
- Limiting crack width of 0.15 mm

| Parameters                                                              | In-situ concrete in<br>contact with the<br>ground   | In-situ concrete not in<br>contact with the<br>ground | High strength<br>concrete for internal<br>columns |  |
|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--|
| Compressive strength<br>class (Cylinder/Cube)                           | C40/50                                              | C40/50                                                | C60/75                                            |  |
| Concrete Mix<br>Constituents                                            | OPC 25% to 30%<br>GGBS 65% to 70%<br>silica fume 5% | OPC 30% to 35%<br>GGBS 65% to 70%                     | OPC 30% to 35%<br>GGBS 65% to 70%                 |  |
| Minimum cement<br>content (kg/m³)                                       | 380                                                 | 380                                                   | 420                                               |  |
| MSA (mm)                                                                | 20                                                  | 20                                                    | 20                                                |  |
| ΑΡΜ                                                                     | Fully bonded<br>waterproofing                       | Coating                                               | Not required                                      |  |
| Durability Parameter                                                    |                                                     | C40/50                                                | C60/75                                            |  |
| Exposed to atmosphe                                                     | re Yes                                              | No                                                    | No                                                |  |
| Water absorption, %                                                     | 1.6                                                 | 3.5                                                   | 3.5                                               |  |
| Chloride migration, m <sup>2</sup><br>(28 – 90 days)                    | <sup>2</sup> /s 1.2 x 10 <sup>-12</sup>             | 5.0 x 10 <sup>-12</sup>                               | 5.0 x 10 <sup>-12</sup>                           |  |
| RCPT, Coulombs 1000                                                     |                                                     | 3000                                                  | 3000                                              |  |
| Resistance to<br>Sulphate(difference in<br>expansion mm/m at 9<br>days) |                                                     | Not applicable                                        | Not applicable                                    |  |



- 120 year design life
- M35 M60 grades used
- Minimum cement content of 360 kg/m<sup>3</sup> adopted, with max w/b of 0.45
- WPT < 10 mm, RCPT < 600 C

| Element                         | Durability<br>exposure<br>condition | Maximum<br>crack width,<br>mm | Cover for 4<br>hour FRP,<br>mm | Nominal<br>cover for<br>crack<br>width*,<br>mm |
|---------------------------------|-------------------------------------|-------------------------------|--------------------------------|------------------------------------------------|
| Diaphragm wall                  | Severe                              | 0.25                          | 80                             | 45                                             |
| Pile cap (side and bottom       | Severe                              | 0.2                           | 80                             | 45                                             |
| faces) resting on layer of      |                                     |                               |                                |                                                |
| blinding concrete not less than |                                     |                               |                                |                                                |
| 50mm                            |                                     |                               |                                |                                                |
| Base slab – Top surface         | Moderate                            | 0.30                          | 45**                           | 30                                             |
| Base slab – bottom surface      | Severe                              | 0.20                          | 70                             | 45                                             |
| (cast against ground/blinding)  |                                     |                               |                                |                                                |
| Basement walls                  |                                     |                               |                                |                                                |
| a) Face in contact with soil    | Severe                              | 0.20                          | 50                             | 45                                             |
| b) Other face                   | Moderate                            | 0.30                          | 40                             | 30                                             |
| Columns (internal)              | Moderate                            | 0.30                          | 40                             | 30                                             |
| Load bearing walls (internal)   | Moderate                            | 0.30                          | 40                             | 30                                             |





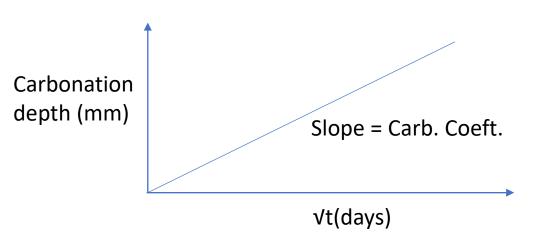
- 100 year design life
- No direct risk of chlorides or sulphates; carbonation also not a major issue due to cladding
- Controlled temperature concreting because of massive size of shear walls

| Structure                  | Concrete grade |          | Nominal cover, mm |          |  |
|----------------------------|----------------|----------|-------------------|----------|--|
|                            | Required       | Provided | Required          | Provided |  |
| Retaining wall             | M50            | M50      | 40                | 50       |  |
| Foundations<br>(Main)      | M50            | M60      | 40                | 75       |  |
| Foundations<br>(Auxiliary) | M50            | M60      | 40                | 75       |  |
| Concrete cores             | M50            | M65      | 40                | 50       |  |





- Concept of service life and durability design introduced (provisions of durability design from 50 to 120 years)
- Deterioration mechanism based exposure classification proposed
- Climatic map linked to durability problems
- QC levels for durability
- Limit state design for carbonation and chloride ingress
- Durability testing at mix design and QC stage
- Additional protective measures included


# Carbonation induced corrosion



- Up to 50 years service life, design table provided
  - Min. cover to rebar
  - Limiting values for w/b, cement content and grade of concrete
  - Min. nominal cover
  - Durability test requirements (electrical resistivity)
- Beyond 50 years (up to 120 years), durability design to be followed
  - Limit state initiation of cracks by corrosion (initiation and propagation period considered)

• Design parameters

- Actions: CO<sub>2</sub> level and weather coefficients
- Resistance: Carbonation rate (coefficient) and cover
- Verification
  - Carb. Coeft. From durability tests





### <sup>Carbonation induced corrosion (contd.)</sup>

- Partial safety factors
  - Design value of carb. Coeft.
  - Design value of cover
- Initiation period determination based on

$$C = W^* K_{1d}^* (ti * \underline{\gamma f * CO}_{2ck} / 500)^x$$

 Propagation period approximated based on grade of concrete, exposure class, type of member (internal / external) and type of cement

### Chloride induced corrosion



- Up to 50 years service life, design table provided
  - Min. cover to rebar
  - Limiting values for w/b, cement content and grade of concrete
  - Min. nominal cover
  - Durability test requirements (electrical resistivity and RCPT)
- Beyond 50 years (up to 120 years), durability design to be followed
  - Limit state build up of chlorides to threshold concentration at the level of steel

• Design parameters

- Actions: Threshold and surface chloride contents
- Resistance: Chloride diffusion coefficient and cover
- Verification
  - Diff. Coeft. From durability tests (such as ASTM C1556)
  - Other chloride based durability parameters (RCPT / RMT)

## Chloride induced corrosion (contd.)



- Partial safety factors
  - Design value of surface chloride content (the surface chloride content is suggested in a table for different exposure classes)
  - Design value of chloride diffusion coeft.
- Values for threshold chloride content from literature
- Initiation period chloride level at steel surface determination based on Fick's second law of diffusion (Error Function soln)

$$C(x,t) = C_s - (C_s - C_i) \times erf\left(\frac{x}{2 \times \sqrt{Cd \times t}}\right)$$





- Sulphate attack modified tables with better definition of exposure environment
- Freezing and thawing table for mean air content
- Alkali aggregate reactions prescription of accelerated mortar bar test and mitigation measures
- Suggestions of Additional Protective Measures (APM)



- Limiting values are strictly adhered to, without addressing the acceptance criteria
- IS456 plans to include durability design as an important ingredient of material selection process









# Thank you!

- manus@iitm.ac.in
- <u>https://civil.iitm.ac.in/faculty/manus</u>
- <u>https://civil.iitm.ac.in/tlc</u>





K RAMAMURTHY

RAVINDRA GETTU



MANU SANTHANAM



KEERTHANA KIRUPAKARAN



KOSHY VARGHESE



BENNY RAPHAEL



RADHAKRISHNA PILLAI



PIYUSH CHAUNSALI



SURENDER SINGH



ASHWIN MAHALINGAM



SIVAKUMAR PALANIAPPAN



NIKHIL BUGALIA