Corrosion in concrete structures & Ways to enhance the service life

Dr. Jayachandran K.

Assistant Professor Department of Civil Engineering National Institute of Technology Calicut (NIT Calicut) Kozhikode, Kerala

jk@nitc.ac.in +91 94422 64411

Courtesy: Some images are sourced from the internet for demonstration purposes

April 29, 2023

Outline

- Corrosion mechanism
- Critical service-life parameters
- > Tests/techniques to determine the parameters
 - \checkmark Chloride diffusion coefficient of concrete
 - ✓ Critical chloride threshold of steel
- Influence of chemical & mineral admixtures on the key parameters that influence service life

Specify Mx-Dy instead of Mx

TV with 10K colour, and other features with 5 years warranty

✓ Number of hours of screen time ON

Why do you need a building with concrete only with M30 on 28th day

✓ What about weathering for 60+ years
✓ No warranty given for civil structures !

> Way forward (example)

✓ Workability: Superplasticizer
 ✓ Strength: M30 → f_{ck} = 30 MPa
 ✓ Durability: D2 → 2 x 10⁻¹² m²/s

Build a structure with M30-D2 for achieving your target service life

What is needed to ensure durability?

Ensure that both heart-crete and cover-crete are highly impermeable

April 29, 2023

Ballim, 2008

shutterstock K | CED | NITC

At the end, corrosion of steel is the major problem

JK | CED | NITC

Environmental exposure Classification systems

Table 3 Environmental Exposure Conditions

(Clauses 8.2.2.1 and 35.3.2)

SI No.	Environment	Exposure Conditions
(1)	(2)	(3)
i)	Mild	Concrete surfaces protected against weather or aggressive conditions, except those situated in coastal area.
ii)	Moderate	Concrete surfaces sheltered from severe rain or freezing whilst wet
		Concrete exposed to condensation and rain
		Concrete continuously under water
		Concrete in contact or buried under non- aggressive soil/ground water
		Concrete surfaces sheltered from saturated salt air in coastal area
iii)	Severe	Concrete surfaces exposed to severe rain, alternate wetting and drying or occasional freezing whilst wet or severe condensation.
		Concrete completely immersed in sea water
		Concrete exposed to coastal environment
iv)	Very severe	Concrete surfaces exposed to sea water spray, corrosive fumes or severe freezing conditions whilst wet
		Concrete in contact with or buried under aggressive sub-soil/ground water
V)	Extreme	Surface of members in tidal zone
		Members in direct contact with liquid, solid aggressive chemicals

Not specific to the specific deterioration mechanism

 \triangleright

D | NITC

Two major types of corrosion

 \triangleright

Why steel embedded in uncontaminated concrete does not corrode?

- Steel does not corrode due to high pH of concrete pore solution
- A protective layer ("Passive film") is formed
 - ✓ A thin, invisible, and stable layer of initial corrosion products (i.e., iron oxides and hydroxides).

aggressive conditions

However, corrosion can occur when exposed to

What are the essential parts of a corrosion cell?

JK | CED | NITC

Note: "Current" flows in the opposite direction as the "electrons" move.

http://www.corrosion-club.com/images/corrosioncell.gif

Carbonation induced corrosion

- > $CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)
- > $H_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2 \cdot H_2O$

- > $H_2CO_3 + CaO \rightarrow CaCO_3 + H_2O$
- ➢ Formation of CaCO₃ leads to reduced pH at which the passive layer is unstable

http://www.nbmcw.com/articles/concrete/others/493-carbonation-adurability-threat-for-concrete.html Prof. Pillai, IIT Madras

CO,

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

77777

corrosionengineering.co.uk

Corrosion of Steel in <u>Water</u> with Oxygen

JK | CED | NITC

Anode & cathode coexist on the same piece of metal !

Carbonation: Test / Detection

JK | CED | NITC

- Fresh surface (fracture)
- Spray phenolphthalei:
 ✓ pH indicator → colour cl

n.org/

Fractured cross-section of a

Chloride-induced corrosion

The process is regenerating and instead of spreading along the bar, corrosion continues at local anodes and deep pits are formed.

Pitting corrosion on strands and deformed bars due to chloride attack

\succ Deformed bar \rightarrow

➢ 7-wire strand →

Why corrosion causes cracking of concrete?

When steel corrodes, its volume increases by approximately 6 times

Critical parameters affecting corrosion initiation time

- 1. Environmental exposure parameters
 - ✓ Surface chloride build-up rate (Cl_{surface})
- 2. Design parameters
 - Cover depth (d)
- 3. Material parameters of steel and concrete
 - Apparent chloride diffusion coefficient of concrete (D_{cl})
 - Critical chloride threshold value (Cl_{th})

April 29, 2023

Durability Test Methods and parameters

Test method	Standard	Parameter
Wenner 4 Probe Resistivity Test		Surface Resistivity
Rapid Chloride Permeability Test	ASTM C 1202	Total charge passed
Rapid Chloride Migration Test	NT Build 492	Non-steady state diffusion coefficient
Chloride Conductivity Test	SA DI Manual	Chloride Conductivity
Bulk diffusion test	ASTM C 1556	Chloride content
Oxygen Permeability Test	SA DI Manual	Oxygen Permeability Index
Torrent Air Permeability Test		Coefficient of Permeability
Accelerated Carbonation Test		Carbonation depth
Natural Carbonation Test (indoor and outdoor exposure)		Carbonation depth
Sorptivity Test	SA DI Manual	Sorptivity index
Gormann water Permeability Test		Surface Permeability

Service life estimation for structures - Exposed to chlorides

- Step 1: Obtain all the input parameters / assumptions
- > Step 2: Determine the initial chloride level in concrete, C_i
- > Step 3: Determine the surface chloride concentration, C_s
- Step 4: Determine the chloride diffusion coefficient in concrete, D_{cl}
- > Step 6: Determine the chloride threshold at S-C interface, Cl_{th}
- Step 7: Use the Fick's law of diffusion Non-steady state diffusion
- Step 8: Calculate the probability density function, Pf
- Step 9: Compute the cumulative density function, CDF

Service Life prediction model

- Concrete is a semi-infinite, porous, homogeneous, and isotropic material,
- No reactions occur between the concrete and the diffusing species (chlorides)

Fick's Second Law of Diffusion

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

In case of constant diffusion

$$Cl_{threshold} = Cl_{initial} + (Cl_{surfact})$$

Common equipment required Contd..

JK | CED | NITC

Cylinder mould 200 x 100 ø

Concrete cutter April 29, 2023

Core cutter

Epoxy resin

Weighing balance (0.0001 g)

Bulk diffusion test (ASTM C1556)

JK | CED | NITC

Finished Surface Test Specimen C_i Specimen C_i Specimen Discard remnant

- Specimens saturated with saturated lime water is immersed in 3% NaCl solution for 35 days
- Uni-directional diffusion
- Chloride profiling with profile grinder
- Chloride ion concentration determined

April 29, 2023

Bulk diffusion test (ASTM C1556)

So we have corrosion, now what?

- Evaluate the nature and extent of corrosion.
- What is damage condition: minor/moderate/severe?
- How much corrosion is not yet evident?
- Can we protect / rescue the existing rebar?

Material parameters of steel and concrete

Critical chloride threshold value

- ✓ Minimum chloride concentration required, at the steel surface, to initiate "active" corrosion of the embedded steel reinforcement
- ✓A competition between the Cl- tending to disrupt and OHtending to stabilize the passive film
- > Corrosion is likely to occur when: $\frac{[Cl^-]}{[OH^-]} > 0.3$

 \checkmark Usually measured in kg/m³ or % by weight of binder

Damaged areas of passive film or corrosion inhibiting layer

Accelerated Chloride Threshold (ACT) test setup

Lollipop test specimen

LPR test specimen and setup

Cyclic exposure and repeated corrosion measurements

Exposure conditions

- ✓ 2 days wet and 5 days dry
 - (25 °C, 65% RH)
- ✓ 3.5% NaCl in Simulated pore solution
- Repeated electrochemical measurements
 - ✓ LPR
 - Scan range: ± 10 mV
 - Scan rate: 0.05 mV/s
 - ✓ EIS
 - AC amplitude : 10 mV
 - Frequency: 10⁵ to 0.01 Hz
 - Points per decade: 10
 - DC potential: HCP

A statistical approach was used to detect the corrosion initiation

- $(\mu_5+1.3\sigma_5) \rightarrow$ stable data
- $1/R_p > (\mu_{st}+3\sigma_{st}) \rightarrow \text{corrosion initiated}$

Corrosion rate Vs exposure time

- Corrosion initiation happens in multiple decades.
- The key parameter affecting that is chloride threshold.
- With the hr-ACT test, the chloride threshold can be determined in just about 3 months

Chloride content of the mortar adjacent to the steel specimen was determined

Corroded lollipop specimen

Types of corrosion inhibiting admixtures (CIAs)

- Based on mechanism of action
 - Anodic inhibitors (Calcium nitrite)
 - Cathodic inhibitors (Amines)
 - Mixed/Bipolar inhibitors (Calcium nitrite + Amino alcohol + others)
- Based on method of application
 - Mixed-in or admixed inhibitor
 - Migrating inhibitor
 - Surface coating as water proof / pore blockers
- Based on chemical composition
 - Inorganic inhibitors (Calcium Nitrite, Sodium monofluorophosphates)
 - Organic inhibitors (Alkanolamines, Aminoacids, Amines)

Mechanisms of action of anodic CIAs

- Formation of physical or chemical barrier or layer around the metal
- Passivating the metal surface
- Influencing the surrounding environment of the metal
- Blocking the access of aggressive contaminants into the system

 $Fe^{2+} + (OH)^{-} + (NO_2)^{-} \rightarrow NO + \gamma \cdot FeOOH$

The nitrite ions help in producing γ FeOOH, which is more stable.

Too little of the corrosion inhibitor fails to protect all anodic sites. Therefore, cathode/anode area ratio increases causing increased corrosion at remaining anodic sites.

Mechanisms of anodic & cathodic CIAs

Mechanism of bipolar inhibitor

Chemical families

- Amino alcohol
- Calcium nitrate and calcium nitrite
- Calcium nitrate, nitrous acid and calcium salt

 $Fe \rightarrow Fe^{2+} + 2e^{-}$ $\frac{1}{2}O_2 + H_2O + 2e^{-} \rightarrow 2(OH)^{-}$

Pillai et al. (unpublished work)

(Deepak and Pillai)

Commercially available bipolar corrosion inhibitors in the market

Manufacturer	Product	Chemical families
UltraPure	Concare	Calcium nitrate
Sika	FerroGard 901	 Calcium nitrite Nitrous acid
BASF	MasterLife 222	Proprietary
CAC	Corrobit OCI	chemical
CeraChem	Ceraplast CI100	
Fosroc	Auramix BCI	
Applechemie	AC-Coroguard	
Many other equiva		

Make sure that they are **bipolar** in nature.

Effect of inhibitors on chloride threshold

In OPC systems

Cl_{th} ranges from 0.8 to 2 % bwoc with an average of 1.5 %

Probabilistic corrosion initiation period (t_i) was estimated using Life-365TM

JK | CED | NITC

• Assumptions: Concrete with w/b = 0.45, cover depth = 50 mm, & D_{cl} = 8.87E-12

The use of corrosion inhibitors can increase the corrosion initiation time by about 2 to 3 times

Effect of w/c ratio on chloride threshold

April 29, 2023 Pillai et al. (unpublished work) (Deepak and Pillai)^{NITC}

Effect of binder type on chloride threshold

Service life = Function of D_{cl} & Cl_{th}

Effect of binder type on chloride threshold

 Although the Cl_{th} may be less for PPC systems, because of the low D_{Cl}, the service life of PPC systems can be high

- Synergistic effects of Cl_{th} and D_{Cl} on service life must be calculated
- Reduction in Cl_{th} due to SCMs can be compensated by inhibitors

April 29, 2023 Pillai et al. (unpublished work)

(Deepak and Pillai)

Service life = Function of D_{cl} & Cl_{th}

Inhibitors could enhance the service life of RC structure by about 30%.

(Deepak and Rillai) NITC

Effect of concrete cover depth on corrosion initiation

Probability density function 1 32 years 0.8 20 years 30 mm 0.6 40 mm •50 mm 0.4 46 years 0.2 0 20 40 60 80 100 0

Time required for corrosion initiation (years)

Assumptions

- Concrete with w/b = 0.45
- Cover depth = 30, 40 & 50 mm

• D_{cl} = 1.35E-12 m²/s

~65% increase with every 10 mm cover

 Ensuring adequate cover is extremely important

Provide good quality cover blocks

- Transport properties of cover block is very important
 DO NOT use brick pieces -> localized corrosion of steel
 Do NOT use plastic products -> localized corrosion of steel
- Use concrete with similar transport properties as of parent concrete

Enforce concrete depth mapping after construction

JK I CED | NITC

Performance specification

\checkmark Any region with less than the recommended cover \rightarrow penalty

Check cover depth after removal of formwork or as soon as possible and take necessary action

GOOD

https://fhwaapps.fhwa.dot.gov/ndep/DisplayTechnology.aspx?tech_id=9https://fhwaapps.fhwa.dot.gov/ndep/DisplayTechnology.aspx?tech_id=9

Tool to estimate the service life of concretes with various w/b, inhibitors, steels, SCM's & EXPOSURE

JK | CED | NITC

www.life-365.org

JK | CED | NITC

Life-365TM – User interface

Life-365[™] – Element geometry

Life-365 v2.0.1 <new project=""></new>		e 🔒		🔶 🤊 🗕 🗖 <mark>- X</mark> -		
Project Settings						
Current Project						
Save project	Project Exposure Concrete Mixtures Individual Costs Life-Cycle Cost SL Report LCC Report					
Save project as	Identify Project					
Export project data	Title Project-1		Analyst Jayachandran	st Jayachandran		
Close project	Description Default settings for a new project		Date 03/13/2012			
Steps	Select Structure Type and Dimensions					
Define project	Time of structure					
Define alternatives	Type of structure					
Define mix designs	Thickness (mm)	200.0		160.00 mm		
Compute service life				↓		
Define project costs	Reinf. depth (mm)	60.0 200.00 mm		V I		
Compute life-cycle cost		10000		0		
Settings	Area (square m)			_		
Help for this window	> Volume of concrete 2,000.0 cub. met.	Allowable range of value: I0, 10000000				
Set default values About Life-365	Chloride concentration units % wt. conc.					
Tips	Define Economic Parameters					
his dimension is used to compute	Base year 2012 A	nalysis period (yrs) 75 Inflation rate (%)	1.80% Real discount rate (%)	3.00%		
he total volume of concrete to be	Define Alternatives (up to 6)					
construction cost listed in the	Add a new att Delete curvently selected att					
ndividual Costs tab.						
	Name (double-click to edit)		Description (double-click to edit)			
	Control concrete	ete A project that uses the normal mix of concrete				
	50% FA	A project that uses the a new mix of concrete				
	50% Slag	a new description				
	20% FA + 20% Slag	a new description				
	2010 diag + 1010 di	a now accompany				

Life-365[™] – Exposure conditions

 \times

JK | CED | NITC o.

Life-365 v2.2.2 Corr Initi periof for RD.life (changed) - New Project October 22, 2015

Project Settings

Life-365TM – Mix proportion and material properties

e-365 v2.0.1 <new project:<="" th=""><th>· • •</th><th></th><th></th><th></th><th></th><th>÷.</th><th></th></new>	· • •					÷.	
ent Project	Project Exposure Concrete Mixtur	res Individual Costs Life-Cycle C	ost SL Report LCC Report				
ve project ve project as port project data se project			Calculate service life	Compute uncertainty	Settings Help		
	Define Concrete Mixtures (selec	t a mix to edit its properties)	T T				
ne project	Name User	Defined D28 (m*m/sec)	m	Ct (% wt. conc.)	Init. (yrs)	Prop. (yrs) Servic	e Life (yrs) = Init + Pr
alternatives	Control concrete	no 8.8716E	-12 0.20	0.050	4.8	6.0	
exposure	50% FA	NO 8.8/166	-12 0.60	0.050	19.9	6.0	
ix designs	25% FA + 25% Slag	no 8.8716E	-12 0.43	0.050	14.7	60	
ervice life	2070 Sigt + 1070 Sr	SSSYES222 1./U300	-12 0.34 -12 0.34	0.050	33,2	0.0	
roject costs	Selected mixture: 25% Slag + 10%	SF (a new description)					
ine-cycle cost	Mixture	Reba	r		Barriers		
	wicm	0.42 Rebs	r steel tune Black Steel		<pre>snone></pre>	•	
his window it values	Slag (%)	25.00% Reba	r % vol. concrete	1	20%		
e-365	Class F fly ash (%)	0.00% Cinhibi	tor				
	Silica fume (%)	10.00%	<none></none>				
	Custom D28 (m*m/sec)	1.7038E-12 m	0.343 Hy	dration (yrs)	25.0 Ct (% wt. conc.)	0.05 Prop. (yrs)	
	Service Life Cross-section Initial	tion Conc Characteristics Init Pro Concentration (% wt. con 0.80	a. [init ∀ariation] c.)				Ť60.00 mm
		0.57 0.53 - 0.40 - 200.00 r 0.27 - 0.13 - 0.00 -	0 0			0 0	¥
			Select	nearest year (0 to init)	Yes	r = 33.2	
	Current Analysis Default Settings a	nd Parameters Online Help					

JK | CED | NITC

Life-365 software - Probability of corrosion initiation

🔶 🖻 💶 🗇 Life-365 v2.0.1 < new project> -Project Settings Current Project Project Exposure Concrete Mixtures Individual Costs Life-Cycle Cost SL Report LCC Report Save project Save project as... Calculate service life X Compute uncertainty Settings... Help Export project data.. Close project Define Concrete Mixtures (select a mix to edit its properties) Steps Service Life (yrs) = Init + Prop User Defined D28 (m*m/sec) Ct (% wt. conc.) Name m Init. (yrs) Prop. (yrs) Define project ... 4.8 Control concrete 8.8716E-12 0.20 0.050 6.0 10.8 no Define alternatives... 19.9 6.0 50% FA no 8.8716E-12 0.60 0.050 25.9 Define exposure... 50% Slag 0.49 0.050 no 8.8716E-12 11.4 6.0 17.4 Define mix designs... 0.54 0.050 14.7 6.0 25% FA + 25% Slag no 8.8716E-12 20.7 Compute service life ... 25% Slag + 10% SF no 1.7038E-12 0.34 0.050 33.1 6.0 39.1 Define project costs.. Selected mixture: 25% Slag + 10% SF (a new description) Compute life-cycle cost... Mixture Barriers Rebar Settinas w/cm 0.42 Black Steel <none> Rebar steel type Help for this window ... 1.20% Set default values ... Rebar % vol. concrete Slag (%) 25.00% About Life-365... Inhibitor Class F fly ash (%) 0.00% <none> Silica fume (%) 10.00% Custom D28 (m*m/sec 0.05 Prop. (yrs) 1.7038E-12 0.343 25.0 6.0 Service Life Graphs ervice the cross-section initiation, conclonaracteristics, init row, init variation Initiation Period Probability, by Year Cumulative Initiation Per. Prob., by Year 1.00 0.30 0.25 0.25 Aliige do 0.15 Aliige do 0.10 0.75 0.50 0.25 0.05 0.00 0.00 20 25 30 35 40 45 70 75 10 15 35 0 5 10 15 50 55 60 65 0 5 20 25 30 40 45 50 55 60 65 70 75 Year Year

Control concrete — 50% FA — 50% Slag — 25% FA + 25% Slag — 25% Slag + 10% SF

... Surrent Analysis Default Settings and Parameters Online Help

m n 20, 2020

OK | OL D | MI

Control concrete — 50% FA — 50% Slag — 25% FA + 25% Slag — 25% Slag + 10% SF

Rebars with discontinuities were observed... (Short videos of the test)

POOR

Nital test

QST rebars cut and polished, cold mounted in 25mm moulds and Etched using a 5% Nital solution (Nitric acid in ethanol)

Courtesy: Sooraj A.O, 2016

Rebars with discontinuities observed predominantly in 8 and 12 mm diameter rebars (stirrups)

Corrosion and mechanical performance of some the TMT/QST rebars in the market

"TM-Ring" test – A quality control test for TMT/QST steel rebars

Data sheet for "TM-Ring test"

LEVEL 1 (L1) ACCEPTANCE CRITERIA				
No.	Question	Answer (circle one)		
1	Is a dark grey peripheral region and light grey core seen?	Yes / No		
2	Does the dark grey peripheral region form a continuous outer ring?	Yes / No		
3	Are the dark grey peripheral region and light grey core concentric?	Yes / No		
4	Is the thickness of the dark grey peripheral region uniform?	Yes / No		
Decision				
If all the answers are 'Yes', then accept the rebar lot				
If any one or more answers are 'No', then reject the rebar lot				

LEVEL 2 (L2) ACCEPTANCE CRITERIA				
No.	Observations	in mm		
1	Diameter of rebar, D			
2	Measured thickness of TM, t _{TM}			
No.	Question	Answer (circle one)		
1	Is $t_{TM} \ge 0.07 \text{ D}$?	Yes / No		
2	Is $t_{TM} \le 0.10 \text{ D}$?	Yes / No		
Decision				
If all the answers are 'Yes', then accept the rebar lot				
If any one or more answers are 'No', then reject the rebar lot				

Sometimes it becomes necessary to determine if a particular reinforcing bar/wire, or lot, has undergone proper heat treatment or is only a mild steel deformed bar. Because the two cannot be distinguished visually, the following field test may be used for purposes of identification. A small piece (about 12 mm long) can be cut and the transverse face lightly ground flat on progressively finer emery papers up to '0' size. The sample can be macroetched with nital (5 percent nitric acid in alcohol) at ambient temperature for a few seconds which should then reveal a darker annular region corresponding to martensite/bainite microstructure and a lighter core region. However, this test is not to be regarded as a criterion for rejection. The material conforming to the requirements of this standard for chemical and physical properties shall be considered acceptable.

What about the $Cl_{threshold}$ of TMT steel rebars, especially when embedded in systems with corrosion inhibitors?

Nomograms are available to estimate the service life

Synergistic effect of various parameters on service life must be considered while selecting materials

Specify Mx-Dy instead of Mx

Summary

- Critical material, design, and environmental parameters for predicting service life
- Inhibitor mechanisms, Bipolar inhibitors are recommended
- Test methods to determine chloride threshold & results
- Optimal dosage is important (strength and durability)
- Reduction in Cl_{th} due to the use of SCMs can be compensated by inhibitors
- Ensuring cover depth is very important

Acknowledgement

- Prof. Radhakrishna G. Pillai, IIT Madras
- Prof. Ravindra Gettu, IIT Madras,
- Prof. Manu Santhanam, IIT Madras
- Prof. Mark G. Alexander, University of Cape Town
- Prof. David Trejo, Oregon State University
- BTCM Corrosion Research Group, IIT Madras

Corrosion in concrete structures & Ways to enhance the service life

Dr. Jayachandran K.

Assistant Professor Department of Civil Engineering National Institute of Technology Calicut (NIT Calicut) Kozhikode, Kerala

jk@nitc.ac.in +91 94422 64411

Courtesy: Some images are sourced from the internet for demonstration purposes

April 29, 2023