Indian Concrete Institute, Bangalore Centre

Technical Lecture Series

Innovation & Impact

Innovative Design of Viaduct

Prof. Aravind Galagali

Ministry of Water Resources Government of Karnataka, Bengaluru.

Cell: 9448113737, Email: galagali.aravind@gmail.com

Highlights

- Longest Viaduct in India
- Water Conveyance & Road on the top
- Tallest pier Height (app 100 feet)
- Innovative application of Technology
- Challenges in Design & Execution
- Completion before time

Design & Construction of AQUEDUCT/ VIADUCT

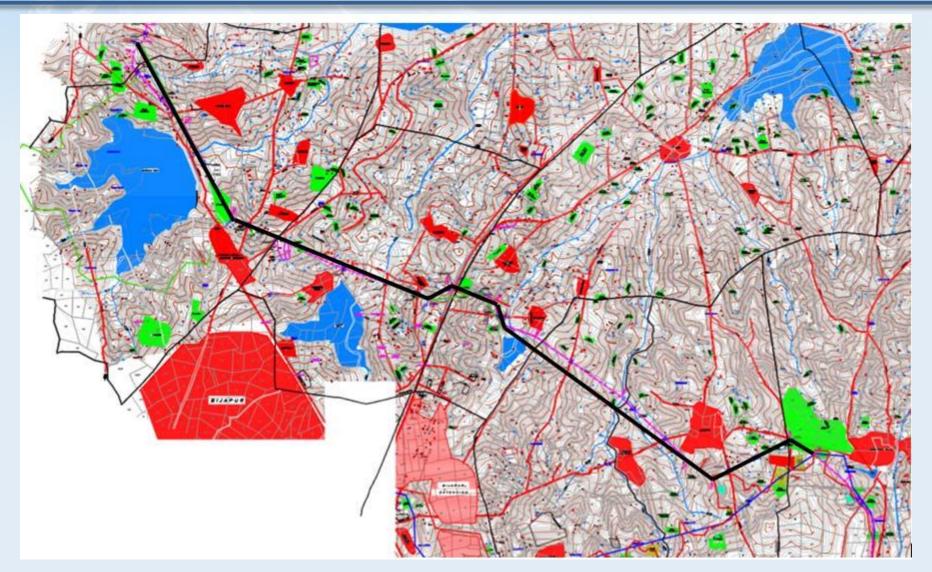
Current Practices

Conventional Cast In-Situ RCC Aqueduct

on Don River, Vijayapur, Karnataka

Huge Centering/Shuttering...!

Don Aqueduct, Observe Span...Design..!



Innovative Application of Technology

Design & Construction of TIDAGUNDI VIADUCT At Vijayapur, Karnataka

For Water Resources Department Govt of Karnataka

Tidagundi Viaduct At Vijayapur, Karnataka

2018/12/2

Challenges in Mega Projects

- Time Over run
 - -How to complete the projects in time..?
- Cost Over run
 - -Delay leads to cost escalation..!
- Quality Control during consruction
 - -Minimum or No mechanism..!
- Maintenance
 - Minimum or Zero ..!
- Resistance for Change

Challenges in Tidagundi Viaduct

At Vijayapur, Karnataka

Need for Innovation:

- Site Conditions
 - Highly undulating
 - Height of Pier varies from 5 m to 30 m
- Time Constraint
 - Total length: 15.5 Km
- Design Constraints
 - Durability...Maintenance
 - Cost Effectiveness
 - Aesthetics
 - Constructability
 (Type of Str, Material, Know how, Machineries etc)

Innovative Application of Technology

Approach For Design & Construction Solutions

Durability & Maintenance

Issues:

- Water Tightness- Zero Leakage
- Minimum number of Joints
- Entire span as one single unit
- Quality assurance in Construction

Options:

- RCC V/s PSC
- Segmental /Non Segmental Construction

Outcome: Prestressed Concrete Structure

Cast in Situ V/s Precast Structure

Issues:

- Length of structure: 15.5 km
- Time constraint: Max 18 months.
- Cantering/Shuttering
- Quality assurance in Construction

Precast Concrete Structure –Best Choice

- Standardisation & Repetition
- Speedy construction
- Better Quality control & Assurance in casting yard
- Minimum site activities
- Cost Effective

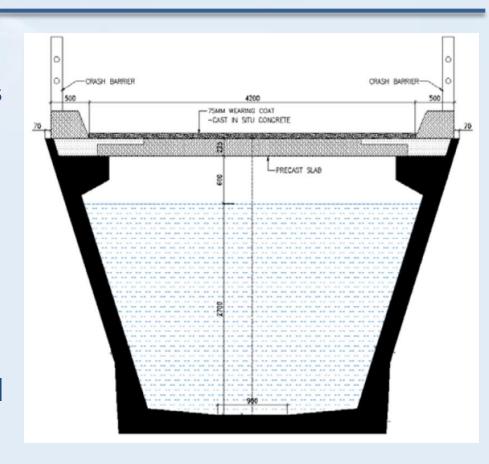
Post tensioned V/s Pre tensioned..?

Post tensioned Structures:

- Thicker sections to accommodate cables
- Requires end block/ diaphragms for anchoring of cables
- Obstruction for flow of water
- Slender Sections in Pretensioned Str.

Outcome:

```
Pre-Tensioned ....

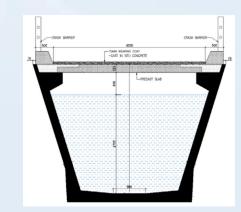

Pre Cast .....

Non Segmental Str.
```

Shape of Superstructure

Trough:

- Governed by Hydraulic parameters
- Least wetted perimeter desirable
- -Trapezoidal sectionis Hydraulic section with
 least wetted perimeter, max
 Conveyance
- Smaller base reduces pier dimension
- Being a BOX, has structural advantage



Max Span of Superstructure..?

Self wt of each span depends on c/s & span

Issues:

- Thinner sections
- Least self weight
- Casting arrangements
- Transportation
- Lifting & Placing on Pier caps (Cranes)

Options: Max lifting capacity: 500 MT at normal Hts.

: 150 MT at ht of 35 m

Outcome: Self wt of each span < 300 MT, using two cranes, one at each end.

Design Parameters

Tidagundi Viaduct At Vijayapur, Karnataka

Trough: Governed by Hydraulic parameters

: Precast, Pre Tensioned str.

Span: 30m (Max); One Trough Weight :<300 MT

Top slab: Precast, 3m wide Panels

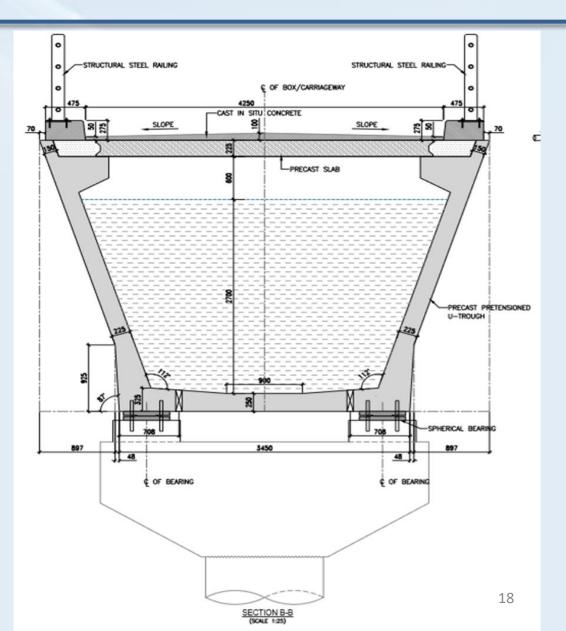
Lifting: Two cranes of 500 MT capacity

(Max lifting capacity at a ht of 30 m:150MT)

Pier: Ht -5 m to 30 m, Tapering(2.4 to 1.2 M), RCC (M50)

Foundation: Isolated, M40

Dimensions: Trapezoidal Trough

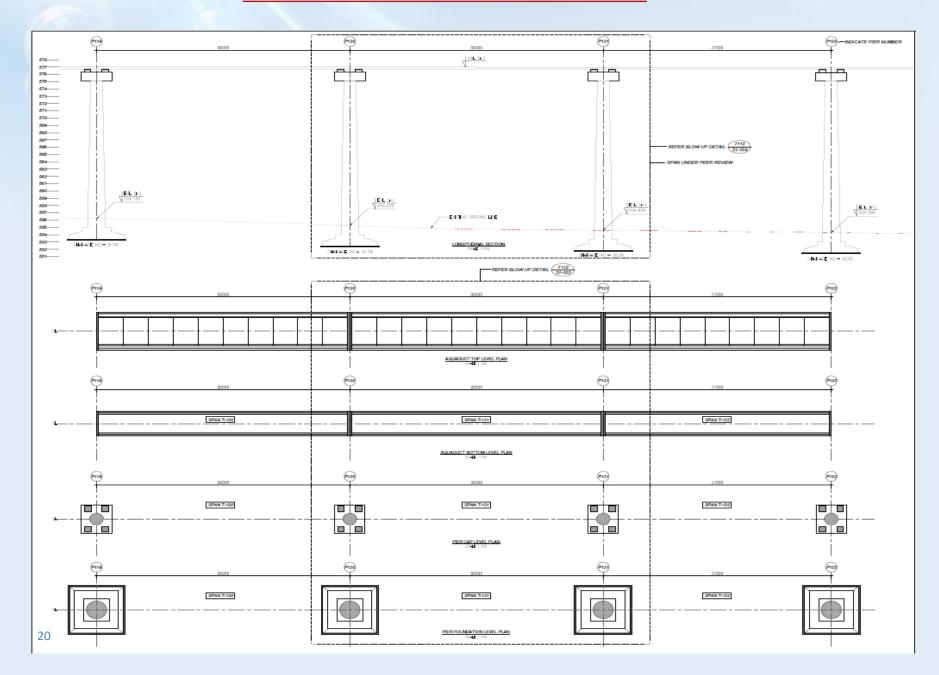

Discharge: 500 Cusecs

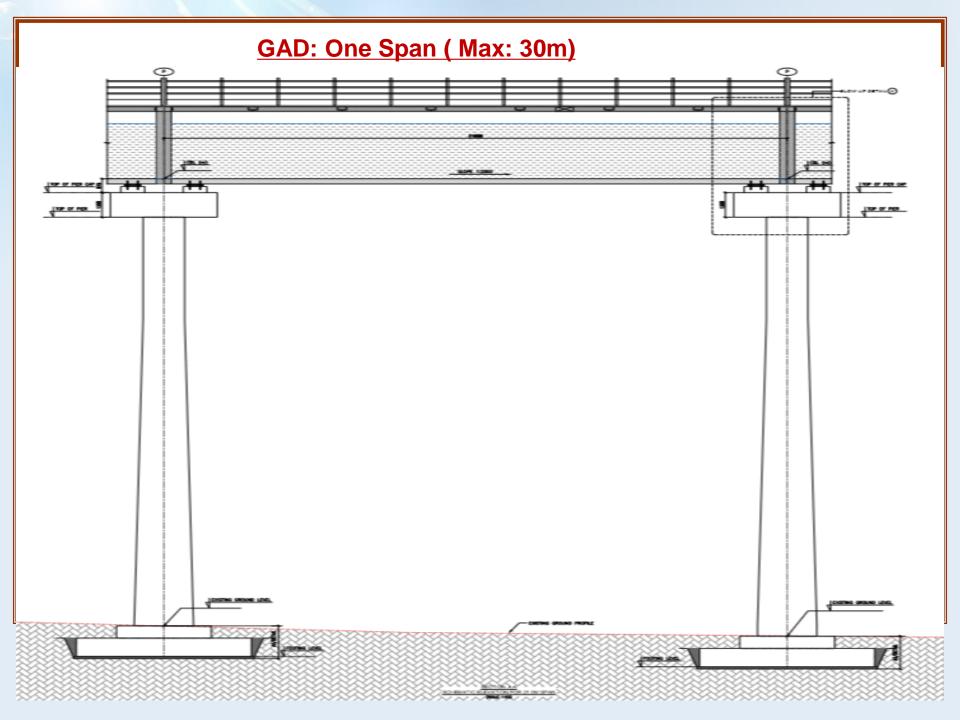
Trapezoidal Cross-Section: 5200x3300 mm

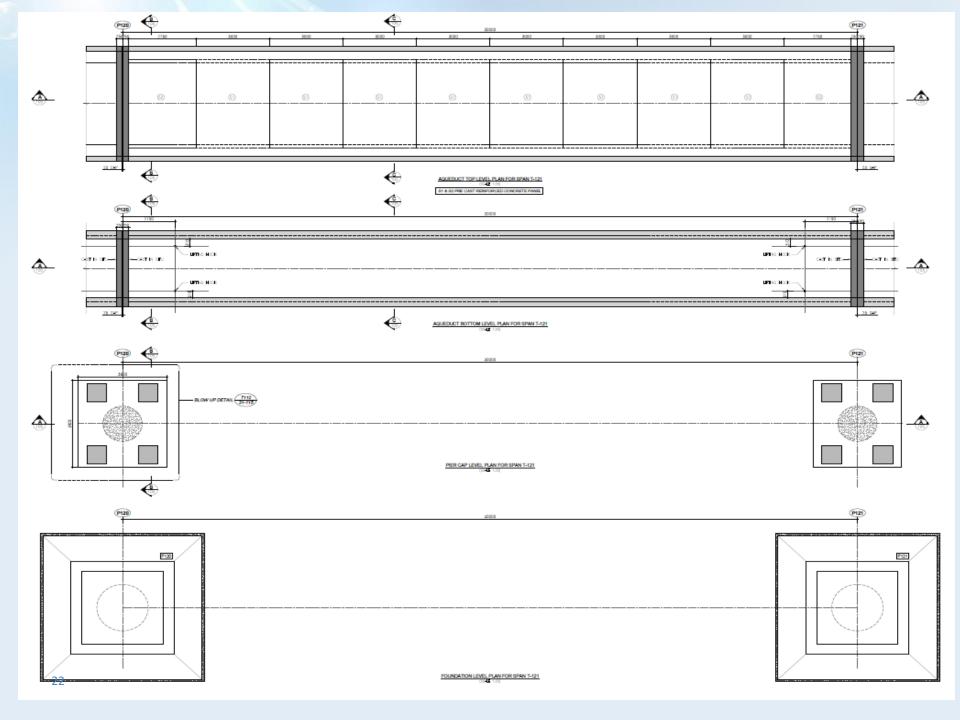
Service road with IRC class A loading.

Pre-tensioned precast trough

Max Span: 30 m

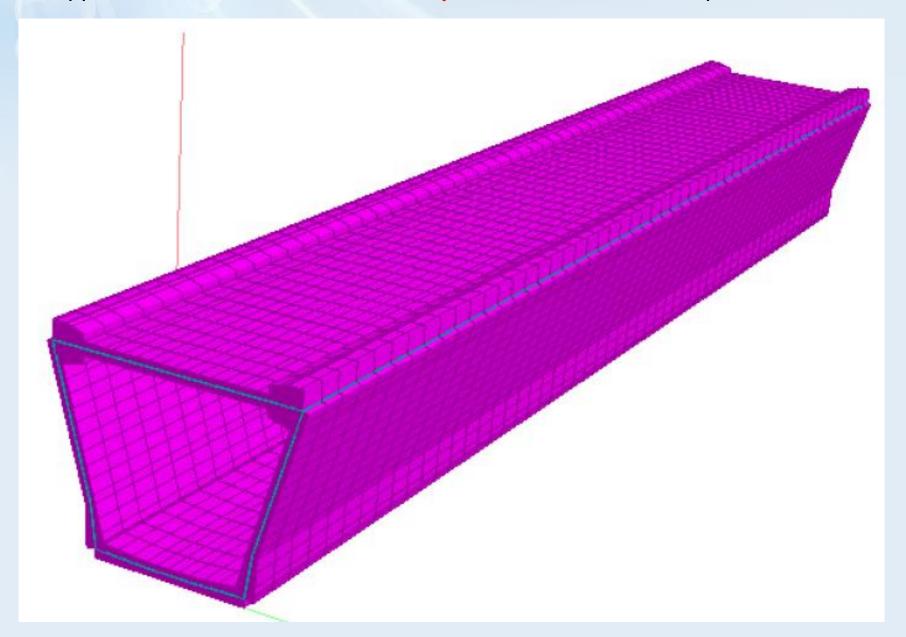

Material Used


Concrete:


- Precast Pre-tensioned Superstructure M50, GGBS
- During Transfer of Pre Stress M35
- Cast-in-Situ Stiches M50
- RCC Substructure (Pier) M50
- RCC Pier Cap M40
- RCC Open Foundations M40
- Pre Cast RCC Railing M30
- PCC for Levelling Course M15
- Reinforcement: Fe-500 D conforming to IS: 1786
- Prestressing HTS : Gr270 ASTM,
 15.2mm dia. strands

2018/12/2

GENERAL ARRANGEMENT DETAIL



Method of Analysis & Design

- Super structure:
 - Longitudinal Analysis & Transverse Analysis.
- Sub Structure : Pier, Pier Cap & Foundation
- Software:
 - STAAD PRO
 - OASYS Software for Stress Check and Crack Width Criteria
 - Micro Soft Excel Programs (In-house)

2018/12/2

Full Span is modelled in STAAD Pro. using 4 noded quadrilateral plate element of approximate size 0.5 m x 0.5m, Many Load Combinations as per Codes

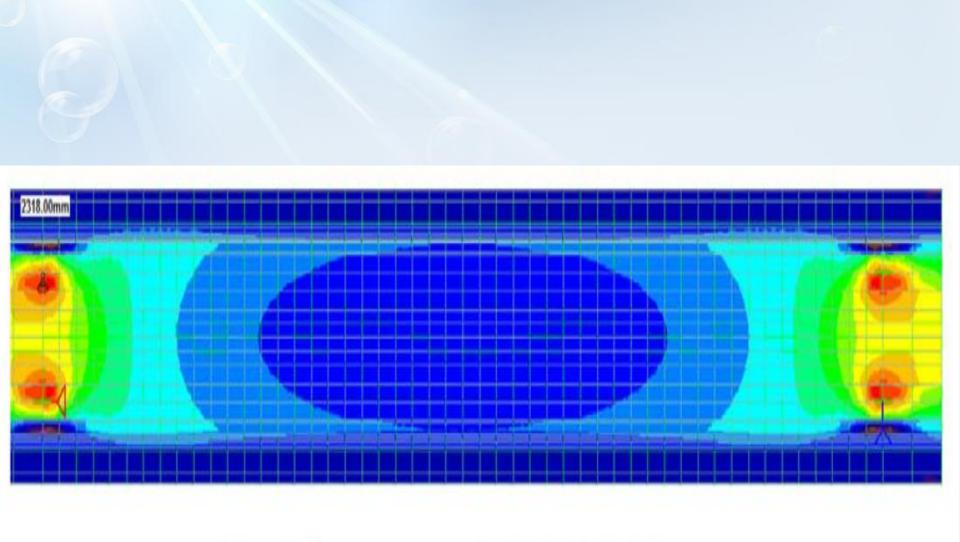
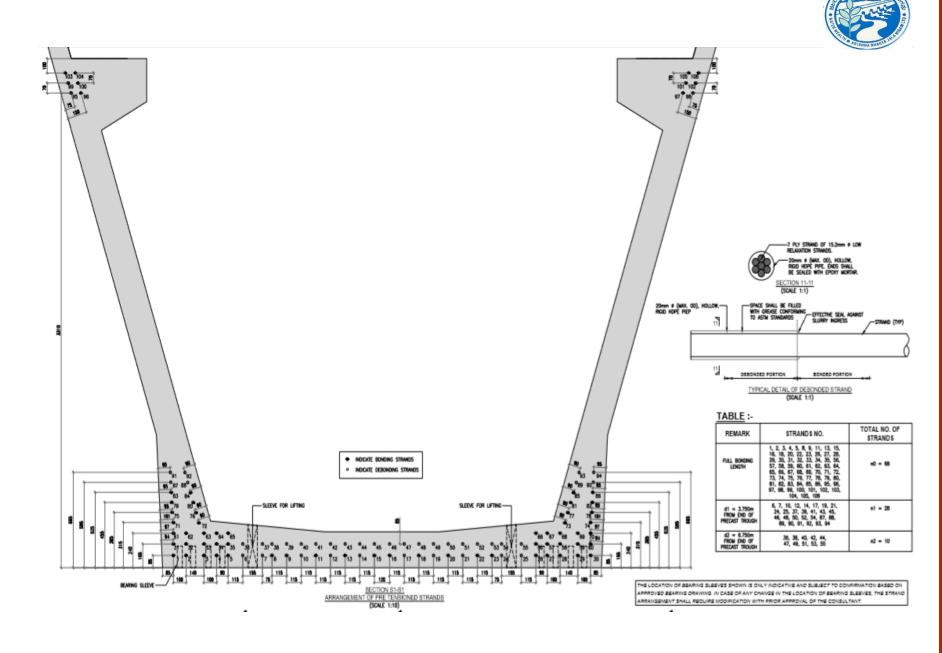
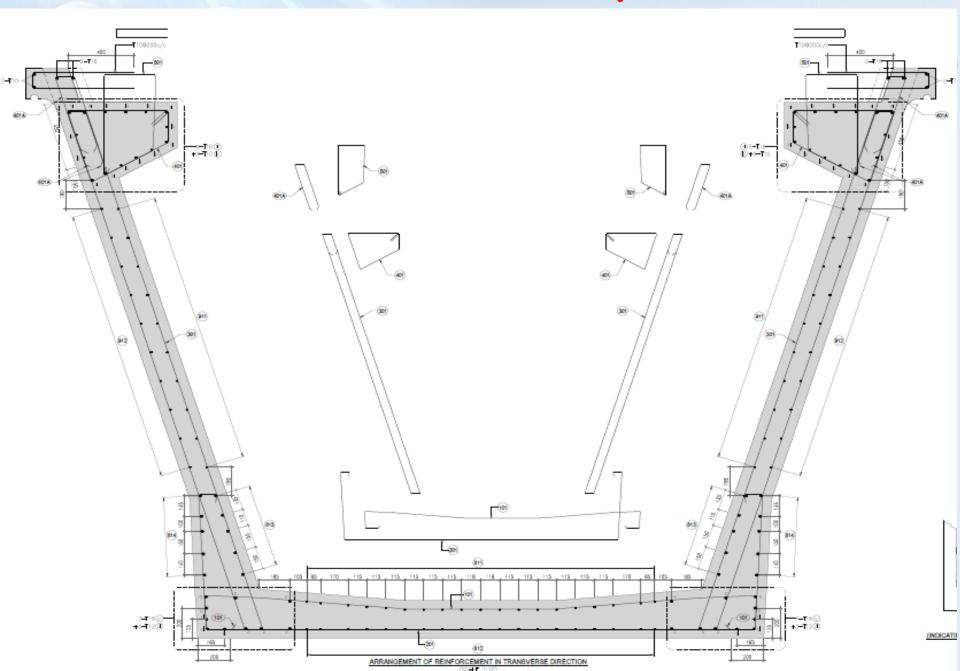
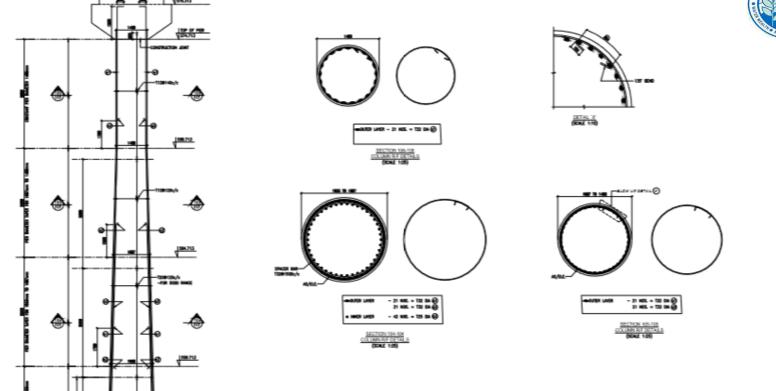




Figure 9. Transverse moment distribution during lifting

TYPICAL STRANDS ARRANGEMENT DETAIL


Reinforcement Details in Superstructure

REINFORCEMENT ARRANGEMENT ALONG WITH STRANDS

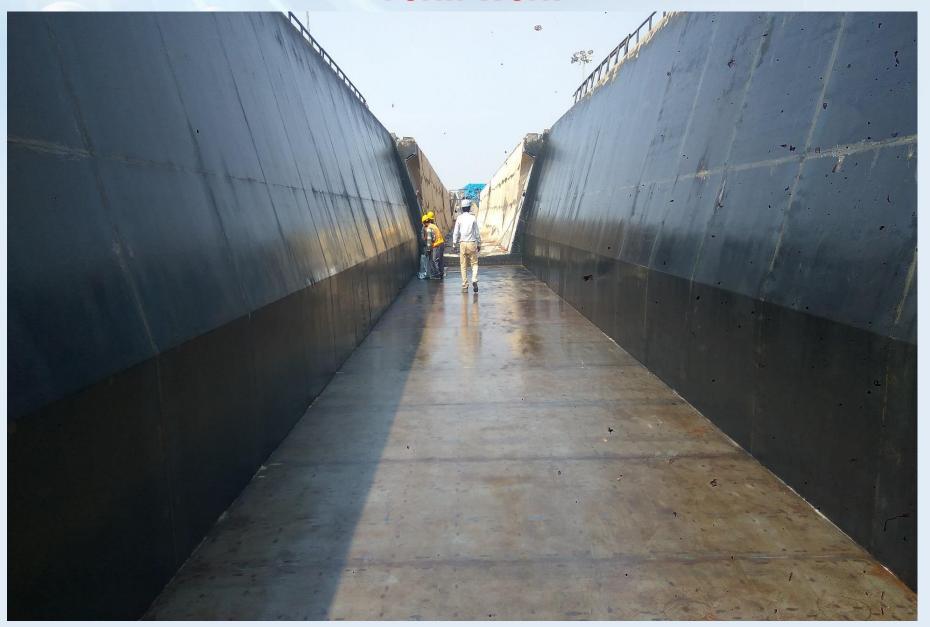
TYPICAL PIER DIMENSION AND REINFORCEMENT DETAIL

Some (Non Technical) Challenges

- Resistance for Change…!
 - By Contractors, Engineers, Administrators etc.
- Non-Familiarity with new of Technology
- Hesitance to create new infrastructure
 - : Casting Yard,
 - : Transportation,
 - : Lifting Arrangements
 - : Procurement of Cranes
 - : Trained man power

Construction of Tidagundi Viaduct

Casting Yard Preparations & RMC Plant



Reinforcement Jigg & Pre tensioning Yard

Two Beds of 200m each, Cranes of 140MT, Production: 12 segments at a time with a cycle of 7 to 9 days.

Form Work

TROUGH- REINFORCEMENT ASSEMBLY

Trough- Reinforcement Assembly

Side Wall Inside Shuttering

Stressing End

Jacking end of Pre Tensioning

2018/12/2

Concrete M50 Grade with GGBS

Concreting of Trough

Concreting of Trough

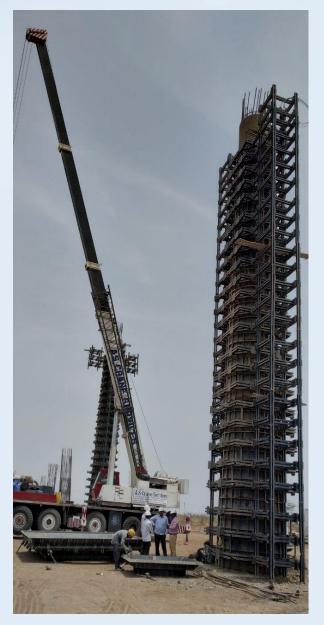
2018/12/2

Trough Curing at Casting Yard

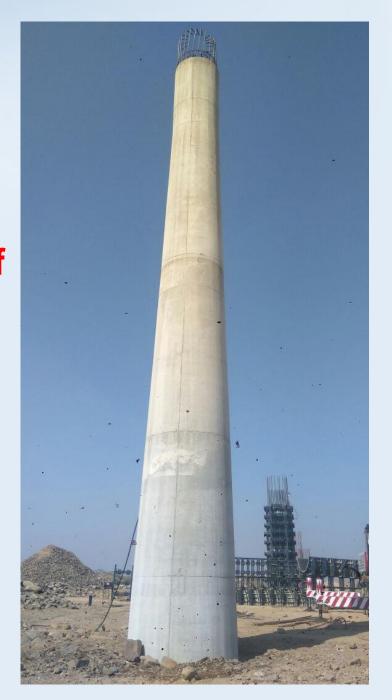
PRECAST SEGMENTS AT CASTING YARD

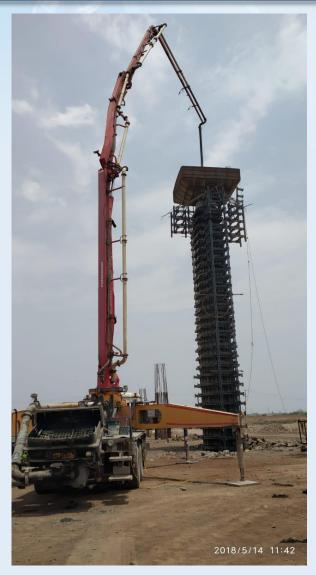
Troughs ready for Lifting & Transportation to Site

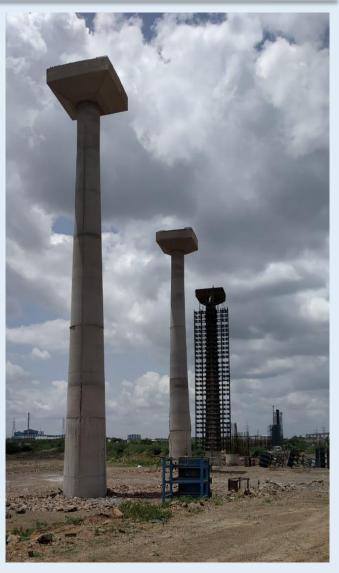
CONSTRUCTION OF PIER

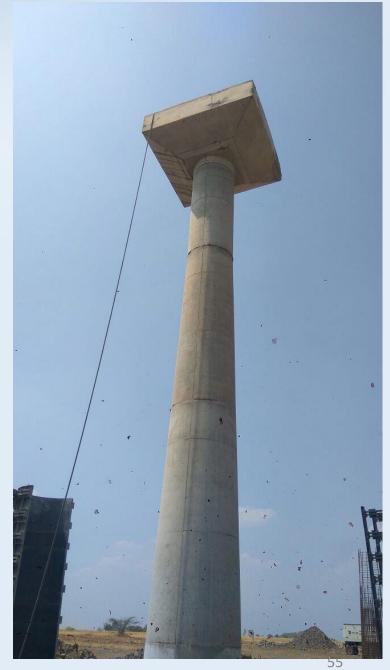


PIER CONCRETING


PIER CONCRETING- Shuttering Arrangments


2018/12/2

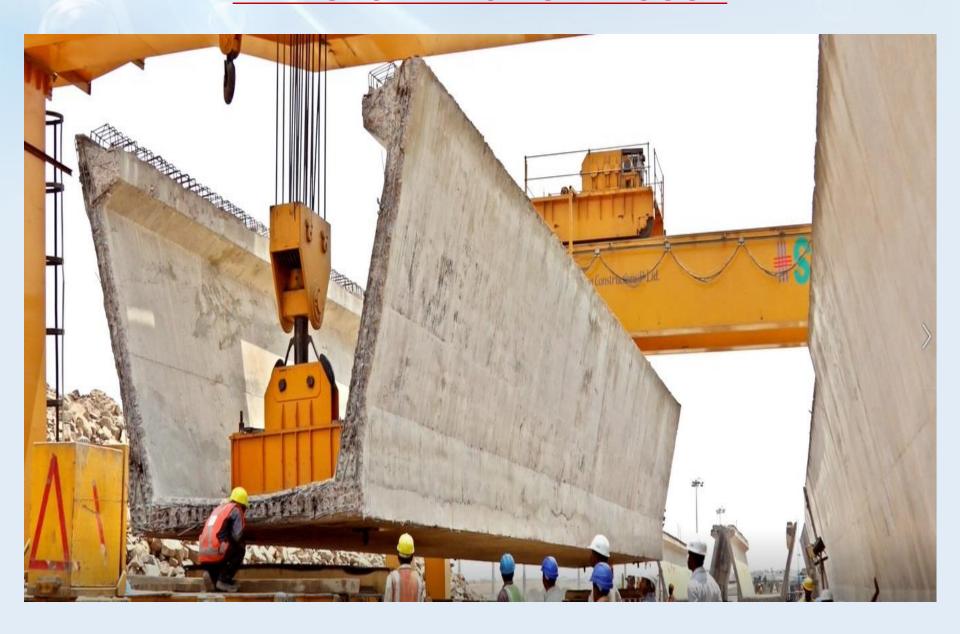

Quality of Concrete & Finishing of Pier


PIER CAP CONCRETING



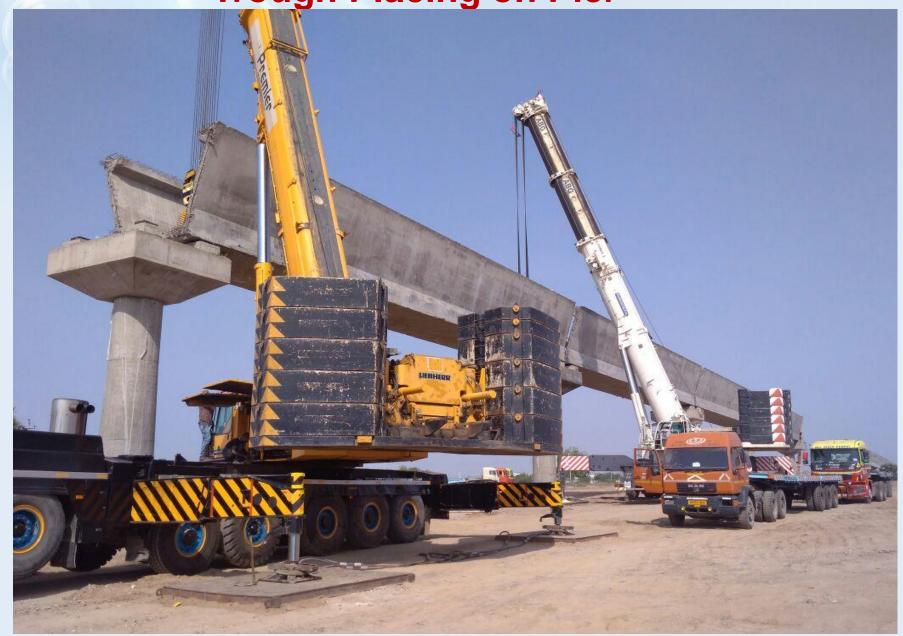
Piers & Pier Caps

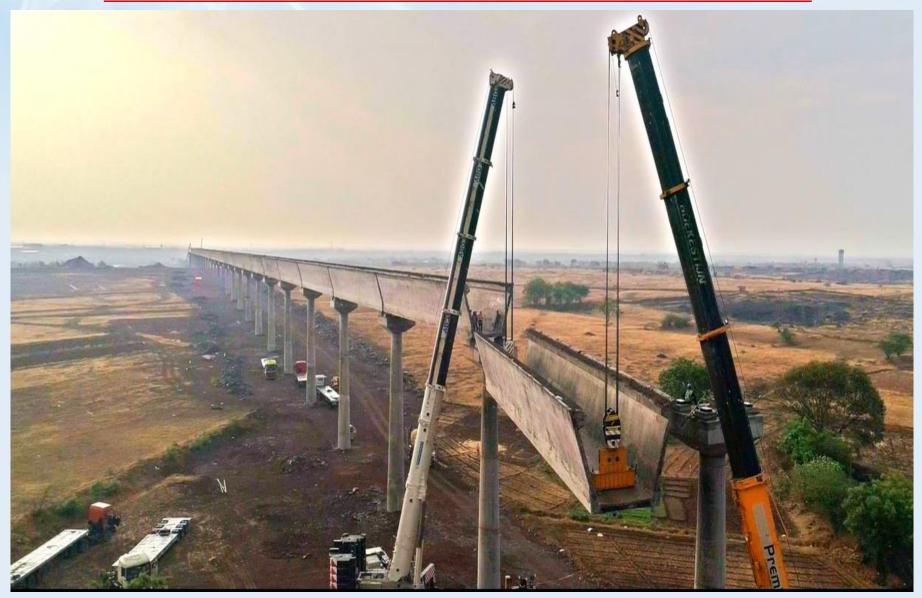
Series of Piers Ready for Superstructure


MACALLOY BARS FOR LIFTING OF TROUGH

Ready for Lifting...

2018/12/2


ERECTION OF 230Tonne TROUGH

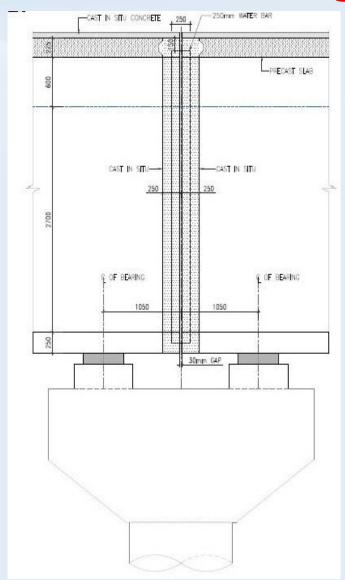


Trough Placing on Pier

ERECTION AND PLACEMENT OF TROUGH ON

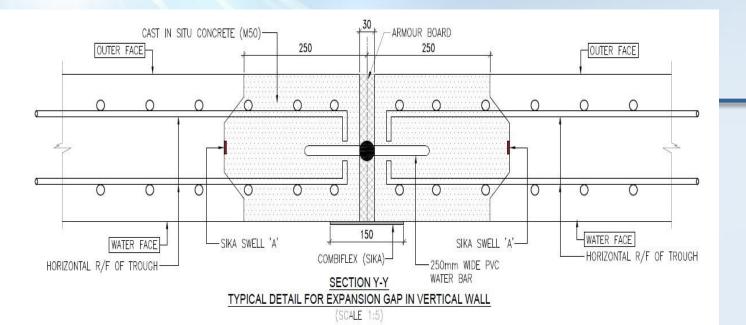
Rail / Road Crossings

Troughs Placed on Pier Cap



Gap between Troughs

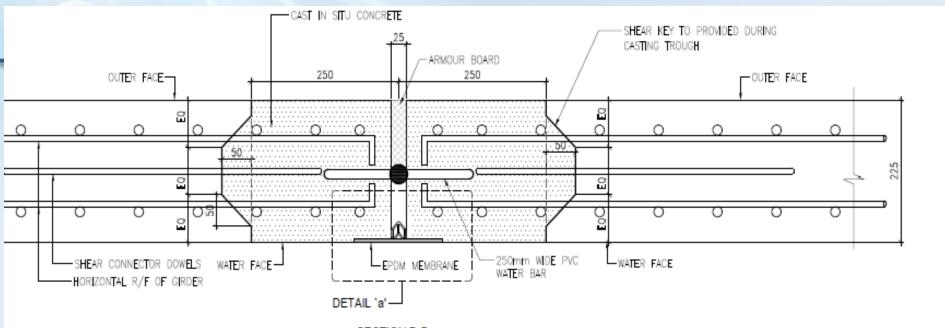
Stitching of Gap between two Troughs



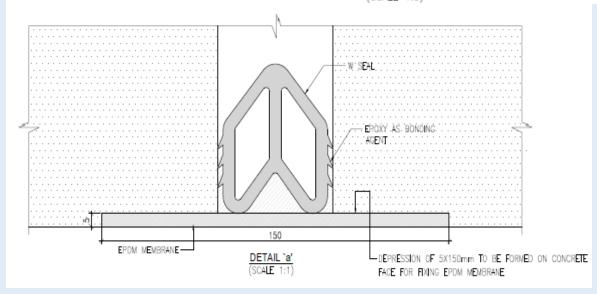
Expansion Joints

- Adjacent segments stitched together at Pier Cap using Cast In Situ Concrete at both ends(250mm)
- Stitching of concrete done with
 - Heavy Duty Water Bar at mid depth of sections, along with Expansion Gap of 25mm for Thermal and Creep Movement.
- Expansion Joint Treatment shall be done W Seal Type Gasket and EPDM Water Treatment to ensure for Water Tightness of Joint.

2018/12/2



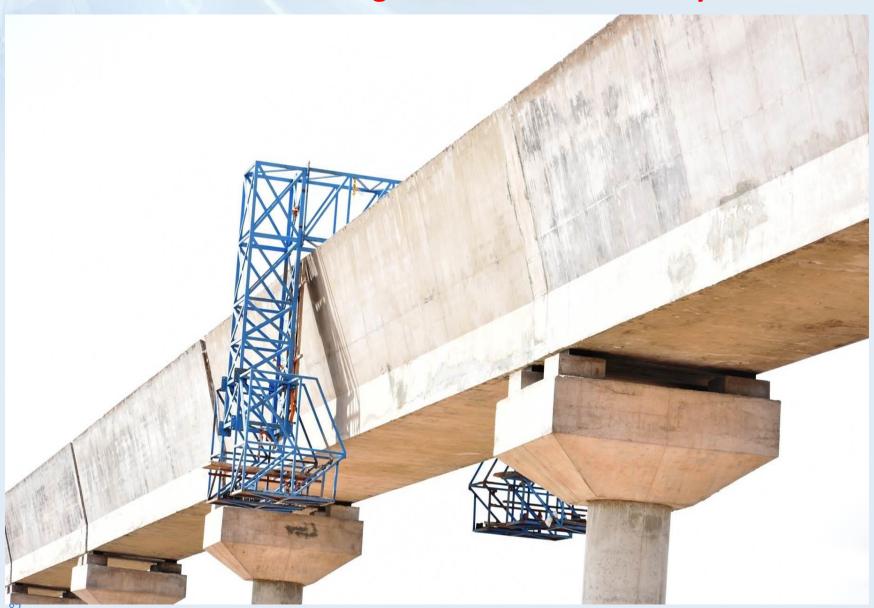
STICHING OF PRECAST SEGMENTS


SECTION Z-Z
TYPICAL DETAIL FOR EXPANSION GAP IN BOTTOM SLAB

(SCALE 1:5)

STICHING OF PRECAST SEGMENTS

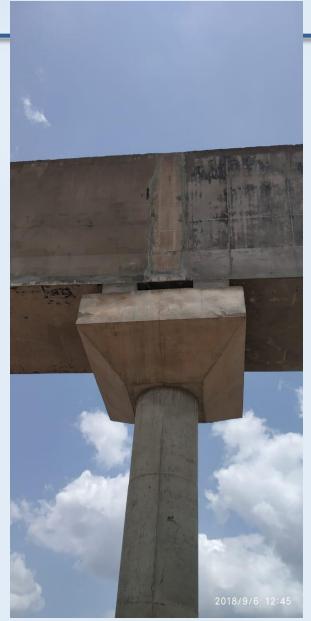
SECTION D-D (TYPICAL JOINING DETAIL TO TWO GIRDER AT PIER CAP) (SCALE 1:5)


Water Bar and expansion joint treatment shall be done during stitching of adjacent spans, to achieve water tightness

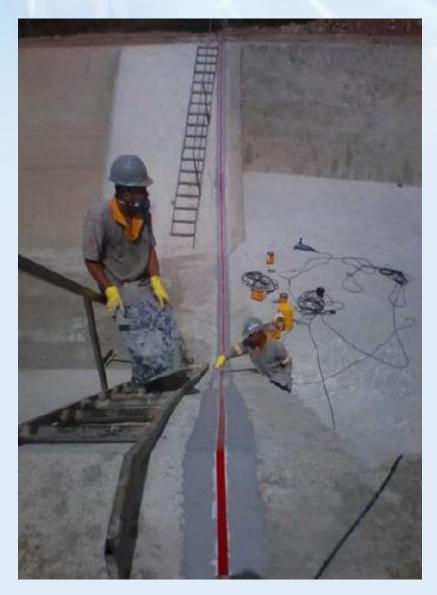
STICHING: Cast in situ Concreting

STICHING Arrangements-Movable Trolley

WATER PROOFING FOR JOINTS

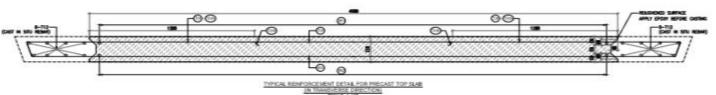


STICHING OF PRECAST SEGMENTS



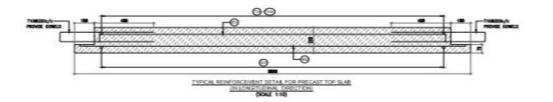
WATER PROOFING FOR JOINTS

TOP SLAB PRECAST AND PLACING IN POSITION



Stitching of Top Slab & Side Curbs

REINFORCEMENT DETAIL OF PRECAST TROUGH TOP SLAB

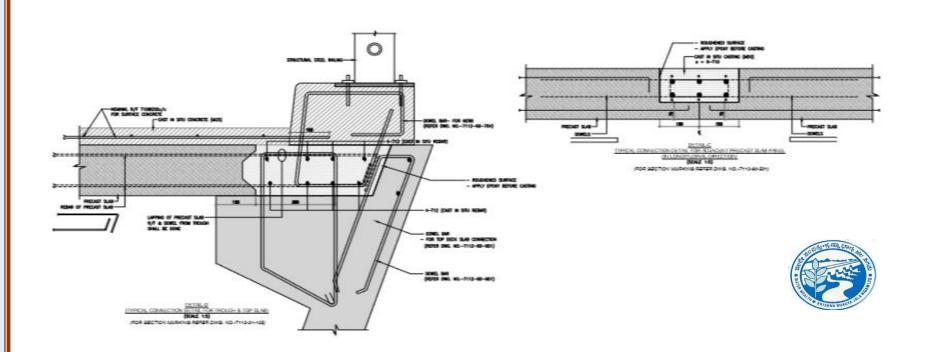


TRANSVERSE REINFORCEMENT SCHEDULE

FOR PRECAST SLAB PANEL				
	email .	200	 -	TAX SHOW

	Set with		
240	0	⊕	9
1	112 4000 c/c	112 6000c/ c	TIS 0100c/c

=	NONE SPECIMENT	SWE OF BU
9	Tro ensou/c	
@ I	TIO OTROUGE	_


TRANSVERSE REINFORCEMENT SCHEDULE

FOR CAST IN SITU SLAS >

	gud wells		
-	9	€	0
	112 4000 ₁ /4	712 6000 /s	716 01000/1

LONGITUDINAL REIN. SCHEDULE FOR CAST IN SITU SLAB :

Sec.	IDENCIAL	SHAPE OF BAR
0	Tro ensity/e	
8	TIG #190c/c	

FINISHED VIADUCT (AQUEDUCT)

Quantities Executed

Total Quantity of Concrete: 1,00,000 Cum

(Substructure: 45,000 Cum & Super Str: 55,000 Cum)

Grade of Concrete: M50 & M40 with GGBS

Total Quantity of Rebars : 12,445 MT

(Substructure: 4,732 MT & Super Str: 7,613 MT)

Total Quantity of Pre Tensioning Strands: 1600 MT

Time of Completion : 12 Months

Design & Execution Team

PROJECT : ELEVATED VIADUCT at TIDAGUNDI

COST OF PROJECT: Rs 280.26 Cr.

TENDER DURATION: 18 MONTHS

CONTRACTOR : M/s SHANKARANARAYANA

CONSTRUCTIONS PRIVATE LTD,

BENGALURU.

DESIGNER : M/s ROOT DESIGNERS, BENGALURU.

PROOF CHECKING : M/s ALOK BHOWMIC, NEW DELHI.

DESIGN WETTING: Dr Kishorechandra, **IISc, BENGALURU**.

ಶ್ರೀ ಸಿದ್ದರಾಮಯ್ಯ

ಸನಾನ್ಯ ಮುಖ್ಯಮಂತ್ರಿಗಳು, ಕರ್ನಾಟಕ ಸರ್ಕಾರ ಅಧ್ಯಕ್ಷರು, ಕೃಷ್ಣಾ ಭಾಗ್ಯ ಜಲ ನಿಗಮ ನಿಯಮಿತ

ವಿಜಯಪ್ರರದ ಇಂಡಿ ಭಾಗದ ರೈತರ ಬದುಕಿಗೆ ಆಶಾಕಿರಣವಾಗಅರುವ ಯೋಜನೆ

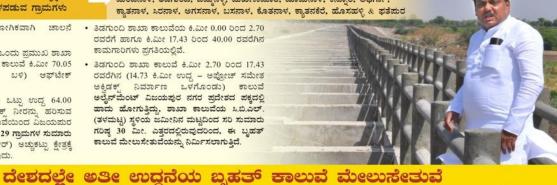
ನೀರಾವಲಿ ಇಲಾಖೆಯ ಮಹತ್ತರ ಹೆಜ್ಜೆ

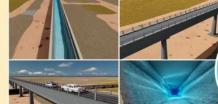
ಮುಳವಾಡ ಏತ ನೀರಾವರಿ ಯೋಜನೆ ಹಂತ–3ರಡಿಯ ತಿಡಗುಂದಿ ಶಾಖಾ ಕಾಲುವೆ ಬೃಹತ್ ಮೇಲುಸೇತುವೆ ಕಾಮಗಾರಿ ಭೂಮಿ ಪೂಜೆ

ದಿನಾಂಕ: 15.08.2017 ಮಂಗಳವಾರ, ಬೆಳಿಗ್ಗೆ 11.00 ಗಂಟೆಗೆ ಸ್ಥಳ: ಉಗ್ರಾಣದ ಎದುರಿಗೆ, ಬುರಣಾಪೂರ ಗ್ರಾಮ

- ಮುಳವಾಡ ಏತ ನೀರಾವರಿ ಯೋಜನೆ ಹಂತ-3 ಒಂದು ಪ್ರತಿಷ್ಠಿತ ಏತ ನೀರಾವರಿ ಯೋಜನೆಯಾಗಿದೆ.
- ಈ ಯೋಜನೆಯಡಿ ಆಲಮಟ್ಟಿ ಜಲಾಶಯದ ಹಿನ್ನೀರಿನಿಂದ ಆರ್.ಎಲ್.640.00 ಮೀ. ಮಟ್ಟದವರೆಗೆ ನೀರನ್ನು ಎತ್ತಿ ಬರಪೀಡಿತ ವಿಜಯಪುರ ಜಿಲ್ಲೆಯ 5.60 ಲಕ್ಷ ಎಕರೆ ಅಚ್ಛುಕಟ್ಟು ಪ್ರದೇಶಕ್ಕೆ ನೀರಾವರಿ ಸೌಲಭ್ಯ ಕಲಿಸಲಾಗುವುದು
- ಈ ಯೋಜನೆಯಲ್ಲಿ ಪ್ರಮುಖವಾಗಿ ಬರುವ 3-ಮುಖ್ಯ ಸ್ಥಾವರಗಳು ಬಳೂತಿ, ಹಣಮಾಪೂರ ಮತ್ತು ಮಸೂತಿ ಗ್ರಾಮಗಳ ಹತ್ತಿರ ಬರುತ್ತವೆ. ಬಳೂತಿ ಜಾಕ್ ವೆಲ್ (ಪ್ರಾಕೇಜ್-1) ಮತ್ತು ಹಣಮಾಪೂರ ಜಾಕ್ ವೆಲ್ (ಪ್ರಾಕೇಜ್-2) ಸಂಬಂಧಿಸಿದ ಸಿವಿಲ್ ಮತ್ತು ಇಲೆಕ್ಟೋ-ಮೆಕ್ಟಾನಿಕಲ್ ಕಾಮಗಾರಿಗಳು

ನೀರಾವರಿ ಸೌಲಭ್ಯಕ್ಕೆ ಒಳಪಡುವ ಗ್ರಾಮಗಳು


ಪ್ರಾಯೋಗಿಕವಾಗಿ ಚಾಲನೆ


ಮೇಲುಸೇತುವೆ ನಿರ್ಮಾಣದಿಂದ

- ತಿಡಗುಂದಿ ಶಾಖಾ ಕಾಲುವೆಯು ಒಂದು ಪ್ರಮುಖ ಶಾಖಾ ಕಾಲುವೆಯಾಗಿದ್ದು, ವಿಜಯಪುರ ಕಾಲುವೆ ಕಿ.ಮೀ 70.05 ರಲಿ (ಮದಬಾವಿ ಗಾಮದ ಬಳಿ) ಆಪ್ಟೇಕ್ ಹೊಂದಿರುತದೆ.
- ತಿಡಗುಂದಿ ಶಾಖಾ ಕಾಲುವೆಯ ಒಟ್ಟು ಉದ್ದ 64.00 ಕಿ.ಮೀ ಇದ್ದು 14.229 ಕ್ಕೂಸೆಕ್ ನೀರನ್ನು ಹರಿಸುವ ಸಾಮರ್ಥ್ಯ ಹೊಂದಿದೆ. ಈ ಕಾಲುವೆಯಿಂದ ವಿಜಯಮರ ಹಾಗೂ ಇಂಡಿ ತಾಲೂಕಿನ ಒಟ್ಟು 29 ಗ್ರಾಮಗಳ ಸುಮಾರು 62,400 ಎಕರೆ (25,572 ಹೆಕ್ಕರ್) ಅಚ್ಚುಕಟ್ಟು ಕೇತ್ರಕ್ಕೆ ನೀರಾವರಿ ಸೌಲಭ್ಯ ಕಲ್ಪಿಸಲಾಗುವುದು

ಮದಬಾವಿ, ಬುರಣಾಮರ, ಐನಾಮರ, ಭೂತನಾಳ, ಹಂಚಿನಾಳ, ಭರಟಗಿ, ಕನ್ನಾಳ, ಅಲಿಯಾಬಾದ, ಇಂಗನಾಳ, ಗುಗದಡ್ಡಿ, ನಾಗತಾಣ, ದ್ಯಾಬೇರಿ, ಹುಣಶ್ಯಾಳ, ಗುಣಕಿ, ಮಿಂಚನಾಳ, ತಿಡಗುಂದಿ, ಬಮ್ಮನಳ್ಳಿ, ಮಖಣಾಪೂರ, ಡೊಮನಾಳ, ಕನ್ನೂರ, ಅಥರ್ಗಾ, ಕ್ವಾತನಾಳ, ಸಿರನಾಳ, ಅಗಸನಾಳ, ಬಸನಾಳ, ಕೊತನಾಳ, ಕ್ವಾತನಕೆರೆ, ಹೊಸಹಳ್ಳಿ & ಫತೆಮರ

- ತಿಡಗುಂದಿ ಶಾಖಾ ಕಾಲುವೆಯ ಕಿ.ಮೀ 0.00 ರಿಂದ 2.70 ರವರೆಗೆ ಹಾಗೂ ಕಿ.ಮೀ 17.43 ರಿಂದ 40.00 ರವರೆಗಿನ ಕಾಮಗಾರಿಗಳು ಪಗತಿಯಲ್ಲಿವೆ.
- ತಿಡಗುಂದಿ ಶಾಖಾ ಕಾಲುವೆ ಕಿ.ಮೀ 2.70 ರಿಂದ 17.43 ರವರೆಗಿನ (14.73 ಕಿ.ಮೀ ಉದ್ದ – ಅಪ್ರೋಚ್ ಸಮೇತ ಅಕ್ಷಿಡಕ್ಸ್ ನಿರ್ಮಾಣ ಒಳಗೊಂಡು) ಕಾಲುವೆ ಅಲೈನ್ ಮೆಂಟ್ ವಿಜಯಪುರ ನಗರ ಪ್ರದೇಶದ ಪಕ್ಕದಲ್ಲಿ ಹಾದು ಹೋಗುತ್ತಿದ್ದು, ಶಾಖಾ ಕಾಲುವೆಯ ಸಿ.ಬಿ.ಎಲ್ (ತಳಮಟ್ಟ) ಸ್ಥಳಿಯ ಜಮೀನಿನ ಮಟ್ಟದಿಂದ ಸರಿ ಸುಮಾರು ಗರಿಷ್ಠ 30 ಮೀ. ಎತ್ತರದಲ್ಲಿರುವುದರಿಂದ, ಈ ಬೃಹತ್ ಕಾಲುವೆ ಮೇಲುಸೇತುವೆಯನ್ನು ನಿರ್ಮಿಸಲಾಗುತ್ತಿದೆ.

ಮೇಲುಸೇತುವೆ ಅಲ್ಪೆನಮೆಂಟ್ ಹಾದು ಹೋಗುವ ಗ್ರಾಮಗಳು

ಪೂರ್ಣಗೊಂಡಿದ್ದು,

ಮಾಡಲಾಗುತಿದೆ.

ಬುರಣಾಮರ, ಐನಾಮರ, ಅಲಿಯಾಬಾದ್. ಹಂಚಿನಾಳ, ಭೂತನಾಳ.

ಮೇಲುಸೇತುವೆಯ

14.73 కి.మిం (ಕಿ.ಮೀ.2.70 ರಿಂದ 17.46 ವರೆಗೆ)

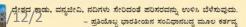
ಜಮೀನು ತಳಮಟದಿಂದ ಗರಿಷ್ಠ ಎತ್ತರ

30 ಮe.

ಮೇಲುಸೇತುವೆ ವಿನ್ನಾಸ

ಆಧುನಿಕ ತಂತ್ರಜಾನ ಅಳವಡಿಕೆಯ "ಪ್ರಿ–ಸ್ಟೆಸ್ಡ್, ಪೀ–ಟೆನ್ಷನ್" ವಿನ್ಯಾಸ

ಮೇಲುಸೇತುವೆ ನಿರ್ಮಾಣದ ವಿವರಗಳು


ವಿಷಮಭುಜ ಚೌಕದ ಆಕಾರ, ಪರಿವೀಕಣೆಗಾಗಿ ಮೇಲ್ಫಾಗದಲ್ಲಿ ರಸ್ತೆ ನಿಮಾಣ

ಸ್ತಾನ್ (ಪೀಯರುಗಳ ನಡುವಿನ ಅಂತರ) ವಿವರ

ಒಟ್ಟು 409 ಸ್ವಾನ್ ಗಳು "(ಪ್ರತಿ ಸ್ಪ್ಯಾನ್ ಉದ್ದ 30 ಮೀ.)

ಯೋಜನೆ ಮೊತ್ತ ರೂ. 280.26 ಕೋಟ

ಕಾಮಗಾರಿ ನಿರ್ಮಾಣ ಅವಧಿ 18 ತಿಂಗಳು

ಶ್ರೀ ರಾಶೇಶ್ ಹಿಂಗ್, ಭಾ.ಅ.ಸೇ. ಪ್ರಧಾನ ಶಾರ್ಯದರ್ಶಿಗಳು, ಜಲಸಂಪನ್ನೂಲ ಇಲಾಖೆ ಶ್ರೀ ಜ. ಜ. ಗುರುಪಾದಸ್ವಾಮಿ, ಕೆ.ಇ.ಎಸ್ ಶಾರ್ಯದರ್ಶಿಗಳು, ಜಲಸಂಪನ್ಮೂಲ ಇಲಾಖೆ

ಶೀ ಅಂಬುಮ್ ಪರ್ವೇಜ್, ಲಾ.ಅ.ನೇ. ವ್ಯವಸ್ಥಾಪಕ ನಿರ್ದೇಶಕರು, ಕೃಷ್ಣಾ ಭಾಗ್ಯ ಜಲನಿಗಮ ನಿಯಮಿತ 🏈 ಕನಾ೯ಟಕ್ರಿಭಾರೆ೯

Construction

Video (2 min)

Thank You