
PALAIS ROYALE

A TREND SETTER

DECEMBER 2010, SRI LANKA

APPROACH TO SUSTAINABLE USE OF CONCRETE

- Use high strength concrete to minimize amount of material consumed
- Use appropriate technology to minimize the binder content of concrete (e.g. particle packing and very fine materials)
- Use additions to the utmost to minimize the clinker content
- Use least possible water during construction for
 - Mixing
 - Curing

INITIAL OBJECTIVES IN PLANNING OF PALAIS ROYALE

300 m tall residential building.

Tallest LEED Platinum rated green residential building in the world.

100% on-site sewage treatment, stopping 30 mill. gallons of waste per year.

Most waste used as manure, remaining recycled.

Use of high grade construction materials to minimize consumptions and reduce energy consumptions in construction

Green public spaces at all levels as well as green areas for individual apartments

Utilize such ventilation and power utilization techniques that reduce the power consumption throughout the life of the building

Harnessing solar energy through BIPV cells and wind energy to provide power to all public areas in building

IMPORTANT PLANNING FEATURES

LANDSCAPED TERRACES/ BALCONIES AT APARTMENT LEVELS – GREEN ENVIRONMENT

TRANSFER GIRDER LEVEL – TO ACCOMMODATE DIFFERENT USES IN THE SAME BUILDING.

LARGE SPAN FLOORS AND WIDE COLUMN FREE SPACES AT LOWER LEVELS – MULTIPURPOSE USAGE

HEAVY LANDSCAPING LOADS AT GROUND & AMENITY LEVELS

ALL OPEN TO SKY TERRACES ARE LANDSCAPED – INSULATION LEADING TO LESS ENERGY CONSUMPTION FOR CONTROLLED CLIMATE WITHIN

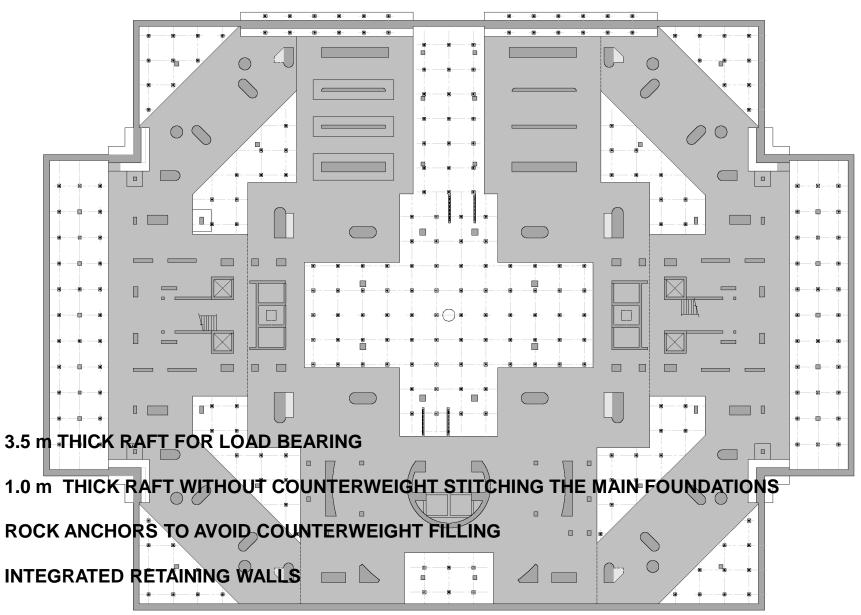
IMPORTANT ARCHITECTURAL FEATURES

THE BRAHMSTHAN AND THE ATRIUM – 220 MTS. HIGH – COLUMN FREE SPACE AT CENTER OF BLDG CREATING NATURAL VENTILATION CURRENTS

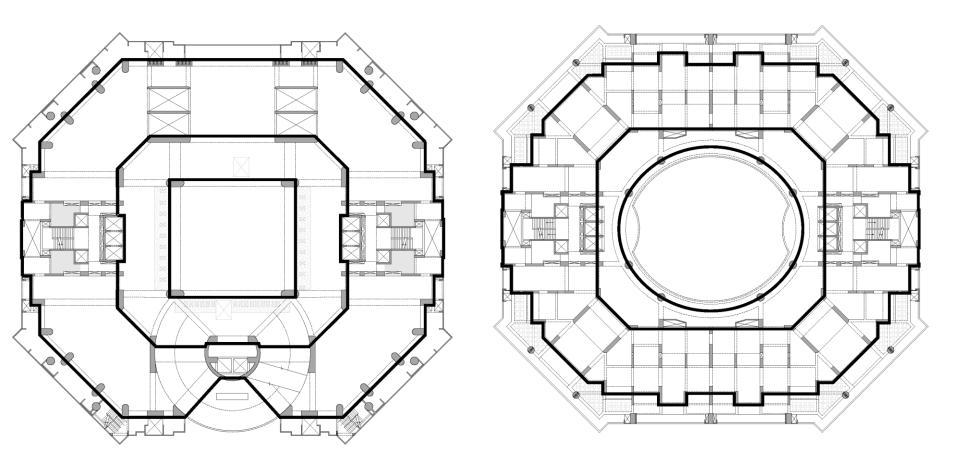
THE MOAT – LIGHT & VENTILATION TO BASEMENT, REDUCING DEPENDENCE ON MECHANICAL VENTILATION

SKYLIGHT – COVERS THE ATRIUM SPANNING 35MTS, NATURAL LIGHT IN DAY TIME

ROOF CAP – HOUSES SOLAR & WIND ENERGY EQUIPMENTS


AMENITIES – SWIMMING POOL, MINI GOLF COURSE, , TENNIS COURT, MINI CRICKET GROUND, HEALTH CLUB, SQAUSH COURT, BASKETBALL,.....

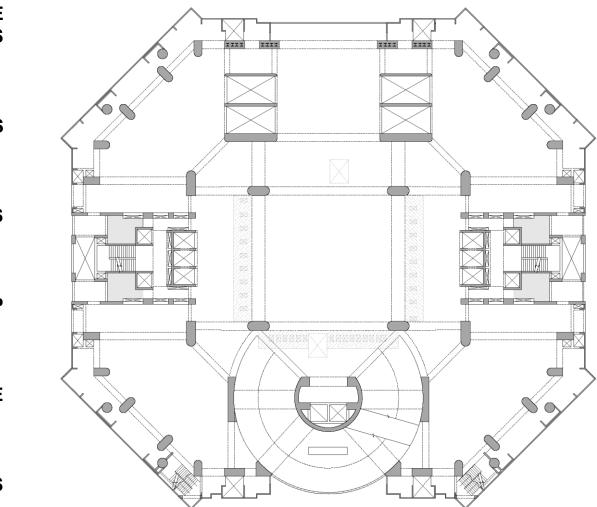
TERRACE + 300 M	— ———————————————————————————————————	
PENTHOUSES	REFUGE	
VILLAS / MANSIONS	REFUGE	
	REFUGE	
APARTMENTS		
MANORS	REFUGE	
APARTMENTS		
AMENITIES	TRANSFER LEVEL +78 M LEVEL	
PARKING		
GROUND		


1 2

STRUCTURAL SCHEME FOR PALAIS ROYALE

FOUNDATION PLAN

RING STRUCTURE



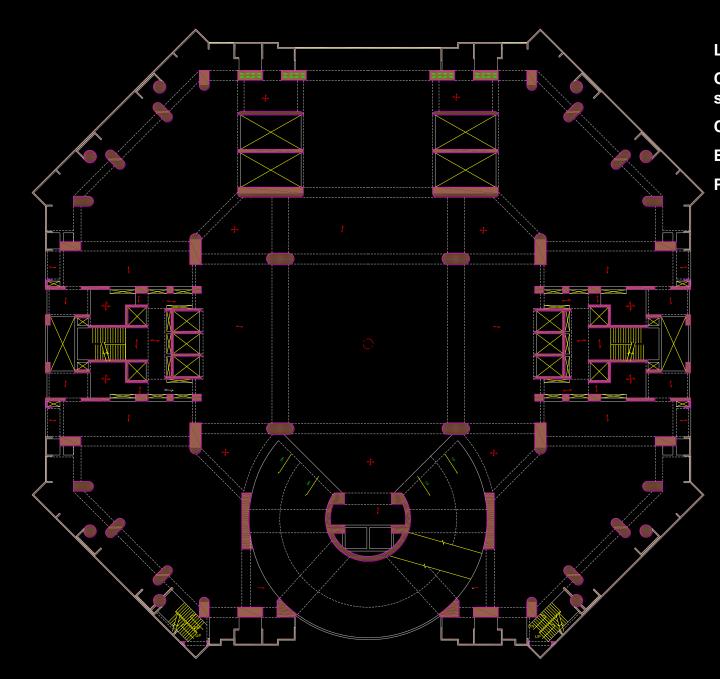
THREE CLOSED RINGS CONCEPTUALIZED TO FORM A UNIFORM LOAD BEARING SYSTEM

SYMMETRY ADDS TO STABILITY

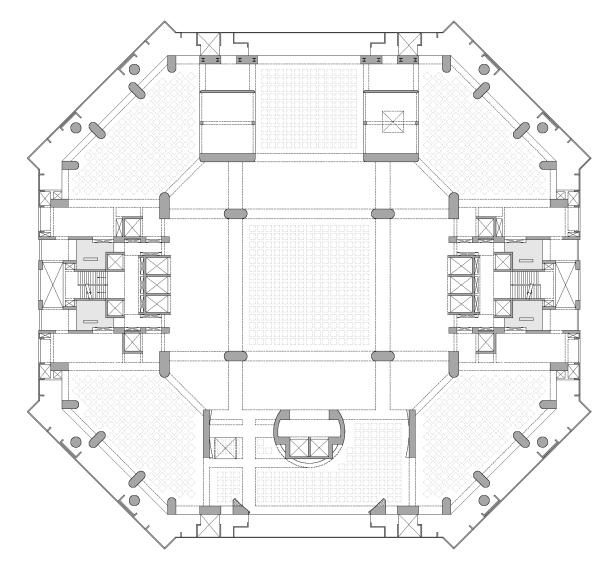
STIFFNESS CENTRE MOVED AWAY FROM CENTRE

PODIUM LEVELS

LARGE COLUMN FREE SPACES


BRAHMASTHAN SLABS

QUADRANT SLABS

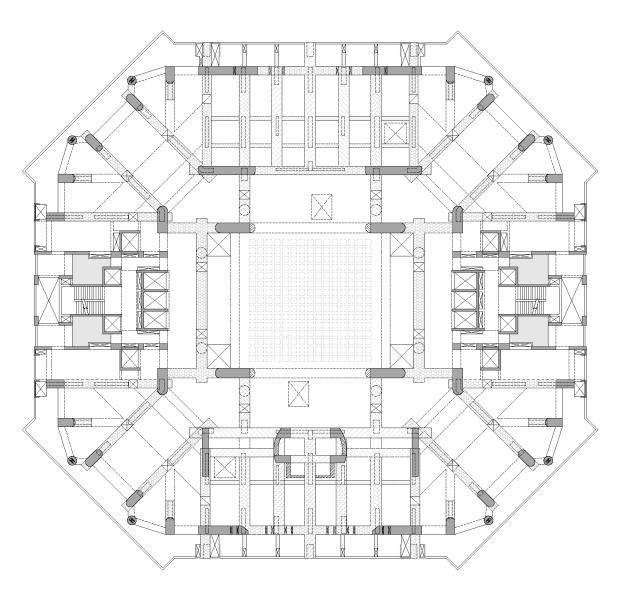

CORE

FIRE STAIRS

Large span slabs Continuation of three ring scheme Car lifts and spiral ramp Brahmasthan slab 24 m span Post Tensioned beams

AMENITY LEVEL

LARGE COLUMN FREE SPACES

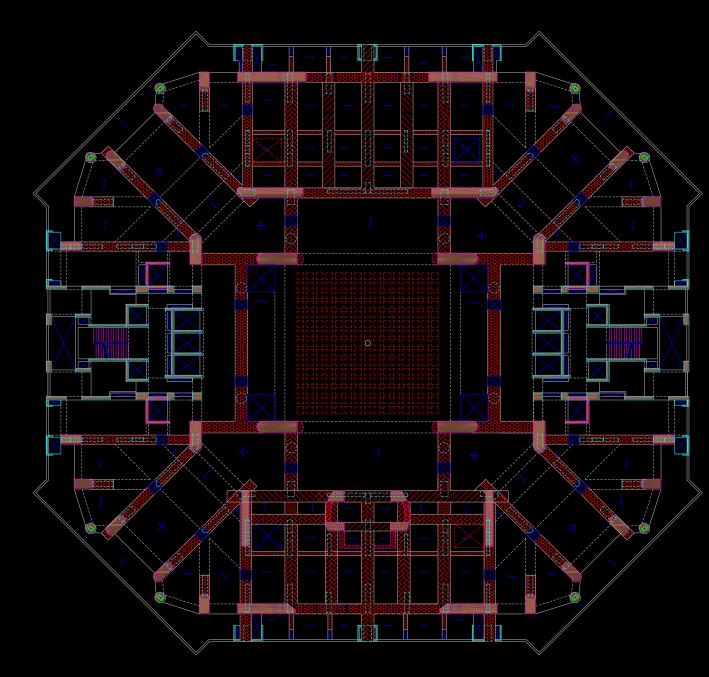

BRAHMASTHAN SLAB

QUADRANT SLABS

HEAVY LOADS POOL PLAYGROUNDS SOIL FILL FOR LANDSCAPE AUDITORIUM

AMENITY 2 DESIGNED FOR SUPPORTING GIRDER BOTTOM CHORD CONSTRUCTION LOADS

GIRDER LEVEL


NOMINALLY POST TENSIONED RCC TRANSFER GIRDERS

VERTICAL POST TENSIONING FOR MONOLITHIC BEHAVIOUR

BRAHMASTHAN SLAB AS TENNIS COURT

WATER TANKS

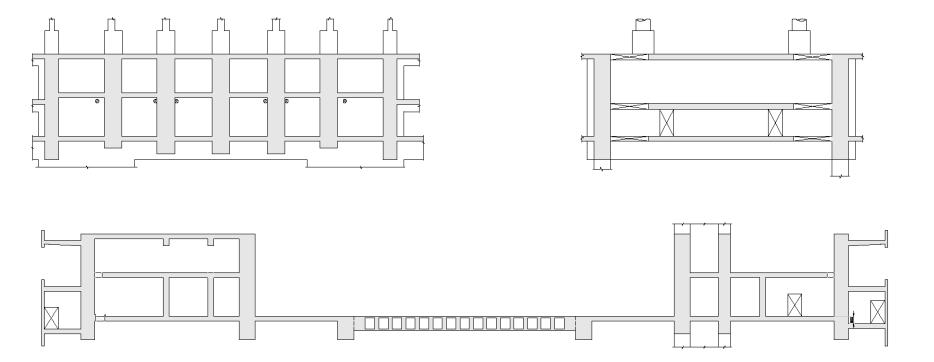
EXTREME ENGINEERING DETAILING AND EXECUTION

Transfer Girders 9 m deep RCC

Vertical Post Tensioning

Openings in girders for services

Three tie levels within girder depths


Water tanks at lower tie level

Tennis Court at Girder Bottom Level

M:60 SCC concrete for girders

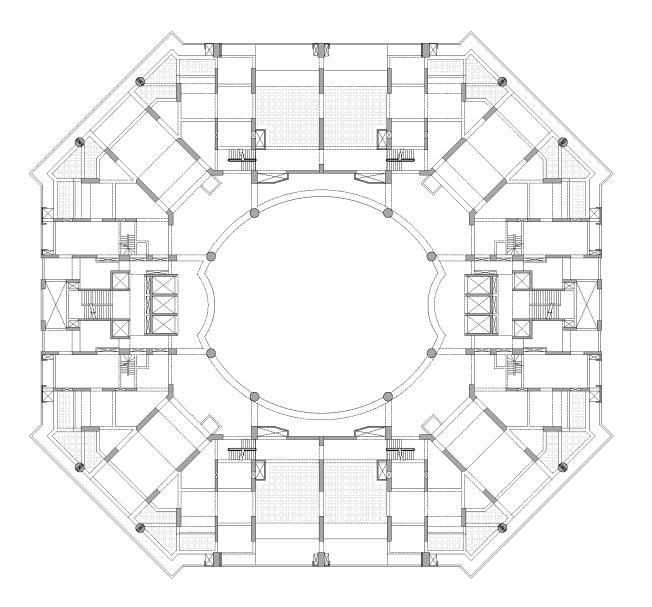
Tie beams and diaphragm slabs to achieve integral action

GIRDER SECTIONS

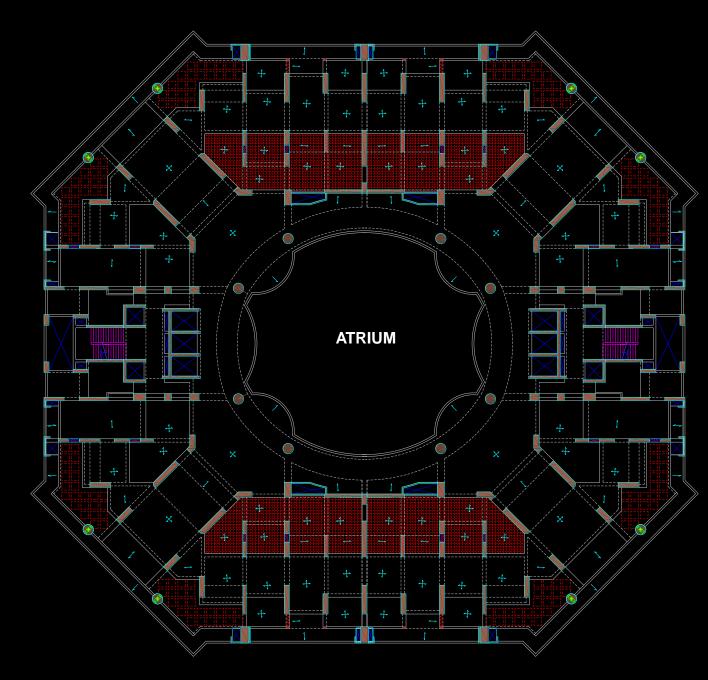
APARTMENT LEVEL PLAN

Concentric Rings of columns

Mass positioned away from centre


Symmetrical Plan

Large cantilevers


Void slab Perfect column beam frames

High headroom facilitated deeper beams

Stiffness distributed evenly in columns and walls

Floor sinking

Column – Beam Frame Scheme

Three concentric rings of columns

Octagonal Plan

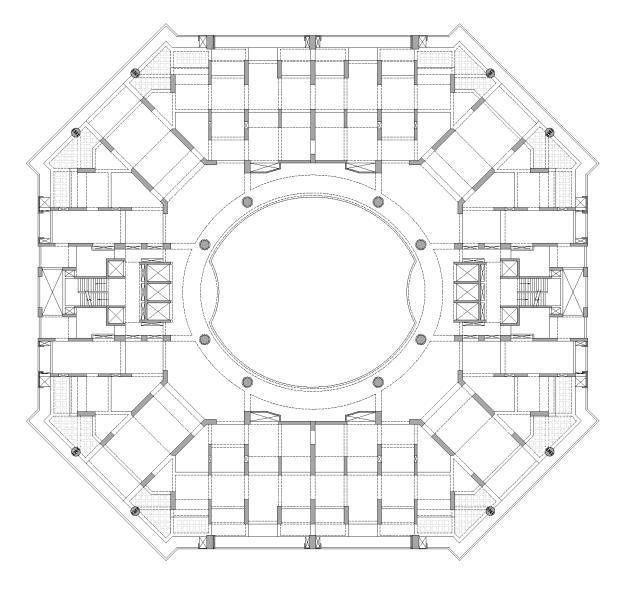
Symmetry about each axis

Central Atrium – 225 m high

MANOR ENTRANCE LEVEL

Concentric Rings of columns

Mass positioned away from centre


Symmetrical Plan

Large cantilevers

Void slab Perfect column beam frames

High headroom facilitated deeper beams

Stiffness distributed evenly in columns and walls

Floor sinking

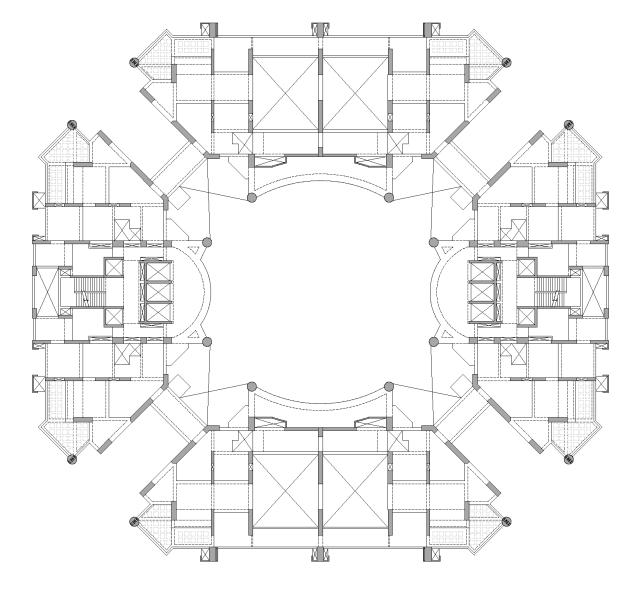
MANOR UPPER LEVEL

Concentric Rings of columns

Mass positioned away from centre

Symmetrical Plan

Large cantilevers


Void slab

Perfect column beam frames

High headroom facilitated deeper beams

Stiffness distributed evenly in columns and walls

Floor sinking

STRUCTURAL PARAMETERS FOR PALAIS ROYALE

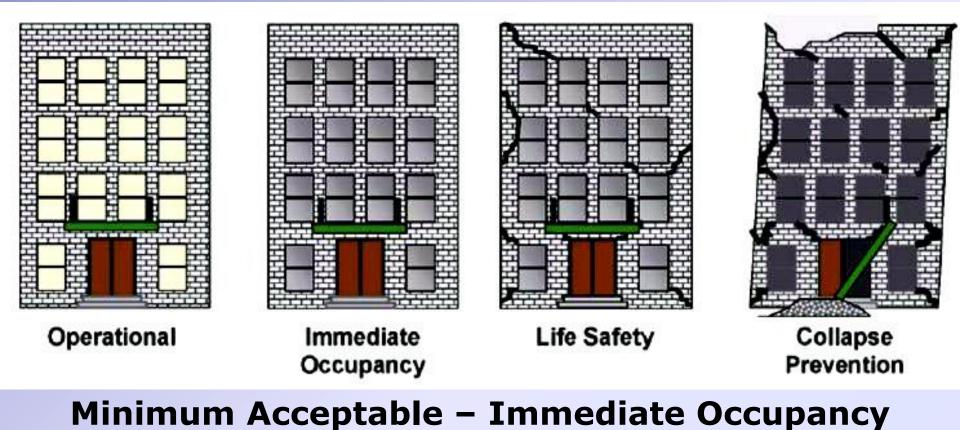
OPTIMIZATION OF CONCRETE QUANTITIES

- **1.** To reduce the structural member sizes
 - a. Slab thicknesses
 - b. Beam sizes
 - c. Column Sizes
 - d. Foundation size
- 2. Leading to lesser concrete and reinforcement consumption
- 3. Leading to lesser formwork material
- 4. Leading to lesser power and water consumption for manufacture of concrete, reinforcement and formwork material
- 5. Leading to lesser construction time thereby requiring reduced power and water for construction establishment

DETERMINATION OF ACCURATE LOAD PARAMETERS FOR OPTIMIZED STRUCTURAL DESIGN

- 1. Extensive reference to international guidelines:
 - (a) CTBUH guidelines for seismic design of tall buildings (2008)

(b) Los Angeles Tall Buildings Structural Design Council guidelines for tall buildings (2008)

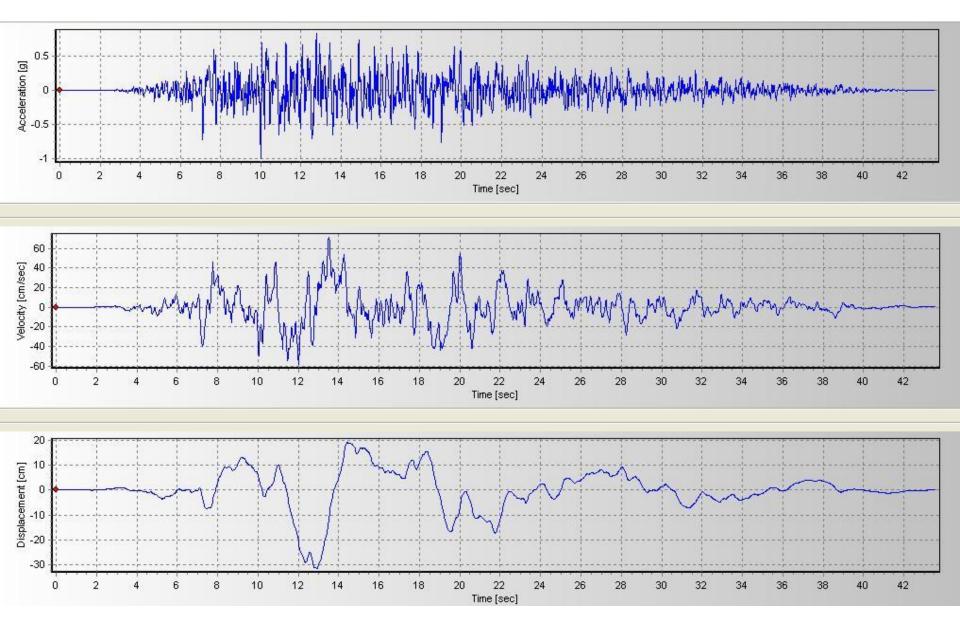

(c) Pacific Earthquake Engineering Research Centre – seismic performance objectives for tall buildings (2008)

- 2. Generation of site specific response spectra and time-histories (undertaken for the first time for a civil application in India).
- 3. Palais Royale being treated as a Special Structure as defined by IS-1893 (2002).
- 4. Minimum design base shear scaled to 1 % of the seismic weight.
- 5. Intrinsic damping for seismic & wind design = 1%
- 6. Structural elements modeled using cracked section properties.
- 7. Importance factor of 1.5 used.
- 8. Seismic deflections under DBE controlled to H/750.
- 9. Wind accelerations under 10 year return period wind pegged at 10 milli-g

SALIENT ASPECTS OF SEISMIC AND WIND DESIGN

- 1. Extensive reference to international guidelines:
 - (a) CTBUH guidelines for seismic design of tall buildings (2008)
 - (b) Los Angeles Tall Buildings Structural Design Council guidelines for tall buildings (2008)
 - (c) Pacific Earthquake Engineering Research Centre seismic performance objectives for tall buildings (2008)
- 2. Generation of site specific response spectra and time-histories (undertaken for the first time for a civil application in India).
- Palais Royale being treated as a Special Structure as defined by IS-1893 (2002).
- 4. Minimum design base shear scaled to 1 % of the seismic weight.
- 5. Intrinsic damping for seismic & wind design = 1%
- 6. Structural elements modeled using cracked section properties.
- 7. Importance factor of 1.5 used.
- 8. Seismic deflections under DBE controlled to H/750.
- 9. Wind accelerations under 10 year return period wind pegged at 10 milli-g

TARGET PERFORMANCE STANDARD


BRIEF FOR PERFORMANCE BASED DESIGN

SITE SPECIFIC TIME HISTORY

DESIGN CONCEPTS

- FOUNDATION COMBINED FOOTINGS FORMING A RING RAFT
- BASEMENT -

•WATERTIGHT STITCHED RAFT ANCHORED TO GROUND WITH PRESTRESSED ROCK ANCHORS TO MINIMIZE THE FILLING MATERIAL

•RCC PROPPED RETAINING WALLS

- COLUMNS M:80 SELF COMPACTING CONCRETE
- POST-TENSIONING BEAMS BELOW GIRDER LEVELS
- GIRDERS
 - STRUT TIE / DEEP BEAM MODEL

ALL STRUCTURAL SYSTEMS INTENDED TO LIMIT USE OF CONSTRUCTION MATERIALS

DESIGN CONCEPTS

BRAHMSTHAN – VOIDED SLABS

PODIUM – POST – TENSIONED FLAT SLABS

• AMENITY LEVELS – POST- TENSIONED VOIDED SLABS

GIRDER PERFORMANCE ENHANCEMENT

- HORIZONTAL POST-TENSIONING BOTTOM CHORD
- PROFILED POST-TESIONING WEB
- VERTICAL POST-TENSIONING GIRDER LAYERS
- POST-TENSIONED BEAMS BELOW GIRDER LEVELS

ALL STRUCTURAL SYSTEMS INTENDED TO LIMIT USE OF CONSTRUCTION MATERIALS

MATERIALS OF CONSTRUCTION

CONCRETE

M:15	FOR LEVELING PCC
M:40	COLUMNS, FLOOR SLABS AND BEAMS
M:50 & M:60	COLUMNS, BEAMS, PT FLAT SLAB
M:80	COLUMNS,WALLS

REINFORCEMENT

Fe 500 and	REINFORCING STEEL WITH
Fe 500 D	ANTI-CORROSION & DUCTILE PROPERTIES

STRUCTURAL STEEL

Fe 250	
Fe 350	

BEAMS COLUMNS, BEAMS

USE OF HIGH GRADE MATERIAL PLANNED TO CONSUME LEAST POSSIBLE MATERIAL

STRUCTURAL PERFORMANCE REVIEW

STRUCTURAL PERFORMANCE COMPARISION

PARTICULARS	DEFN	HEIGHT/DEF	TIME PERIOD	ACCN	REMARKS
	mm	ratio	sec	m/sec ²	
STATIC	374	775	9.893	8.82	LIFE SAFETY
ZONE III	160	1811	10.06	6.5	IMMEDIATE OCCUPANCY
ZONE IV	241	1205	10.06	9.75	IMMEDIATE OCCUPANCY
SITE SPECTRA	113	2565	10.06	4.61	OPERATIONAL
WIND CODE	221	1311	10.06	8.82	IMMEDIATE OCCUPANCY
WIND TUNNEL	248	1169	10.06	10.05	LIFE SAFETY
E – VALUE	214	1354	9.893	8.82	IMMEDIATE OCCUPANCY

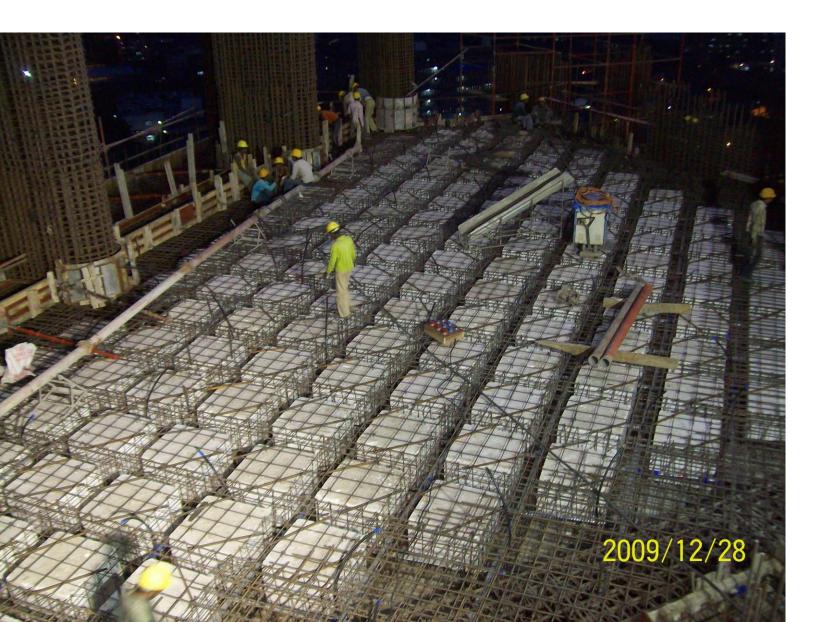
DRIFT COMPARISON WITH & WITHOUT DAMPERS

Comparison of Peak Displacements at Various Levels with and wuthout Dampers				
Approx Ht where Displacements measured in meters	Direction of Displacement	Floor Displacements for Building without Dampers (mm)	Dampers Upto Girder Level -136 Dampers of 200 Tons capacity each (mm)	
75m	Х	294	76	
150m	Х	374	184	
200m	Х	272	257	
304m	Х	556	358	
75m	Y	278	89	
150m	Y	327	189	
200m	Y	290	261	
304m	Y	585	370	

STRUCTURAL PERFORMANCE AS PER DEFINED DRIFT STANDARDS

BUILDING CONFIGURATION	PEAK DISPLACEMENT IN X - DIRECTION	PEAK DISPLACEMENT IN Y - DIRECTION	STRUCTURAL PERFORMANCE OF BUILDING
WITHOUT ANY DAMPERS	556	585	LIFE SAFETY
WITH 136 DAMPERS UPTO GIRDER LEVEL	358	370	IMMEDIATE OCCUPANCY

CONCRETE


HIGH PERFORMANCE CONCRETE

CONCRETE	USAGE AREAS	DESIRED PERFORMANCE
M:15	FOR LEVELING PCC	PUMPABLE
M:40 SCC	COLUMNS, FLOOR SLABS AND BEAMS	FOR EARLY STRENGTH GAIN REDUCTION IN SIZES AND REBARS
M:50 & 60 SCC	COLUMNS, BEAMS, PT FLAT SLAB	TRANSFER OF LOAD THROUGH FLOOR, EARLY STRENGTH GAIN, REDN IN SIZES AND REBARS
M:60 SCC	9 m DEEP TRANSFER GIRDERS	SELF COMPACTING, EARLY STRENGTH GAIN
M:80 SCC	COLUMNS, WALLS	TO ADDRESS COMPACTION PROBLEMS

Post Tensioning of slabs

Voided Slab – Rebar work in progress

Column Cages

2008

ANTI

Pre-engineered Column Formwork

Post Tensioning of Transfer Girders

HIGH PERFORMANCE CONCRETE

Normal / vibrated concrete **Retarded Concrete** Surface retarders to avoid cold joints Surface retarders to facilitate green cutting Foam concrete for filling in sunken areas **Temperature controlled concrete** Containing heat of hydration for 72 hours to avoid shrinkage cracks Use of curing compounds **Online NDT** Core testing for segregation Fibers for water repelling properties for underground elements Fibers for shrinkage control **Pre construction mock up test**

CONCRETE INFORMATION

DEVELOPMENT OF HIGH PERFORMANCE CONCRETES

- M:60, M:80 CONCRETES
- AGGREGATE IMPORTANCE
- ADMIXTURE IMPORTANCE
- SELF COMPACTING CONCRETE

- FOAM CONCRETE
- LIGHT WEIGHT CONCRETE BLOCKS
- LIGHT WEIGHT STRUCTURAL CONCRETE

CONCRETE INFORMATION

M:80 SCC

Target strength	:	90 N/sq.mm.
Free water cement ratio	:	0.225
Cement content	:	450 kg
Fly Ash	:	168 kg/ cu.m
Micro silica	:	23 kg / cu.m

Alco Fine was also used at a later stage when it was introduced as a new material in the market.

CONCRETE INFORMATION

Self Compacting Concrete

CONCRETE PREPARATIONS

On site concrete batching plants Fixed concrete pipelines Temperature monitoring and control Admixture dosage control **Fogging system installed Chilled water system installed** Site laboratory established Mock up studies

COVERED BATCHING PLANT

EXPERIENCE OF HIGH GRADE CONCRETE

POSITIVE POINTS

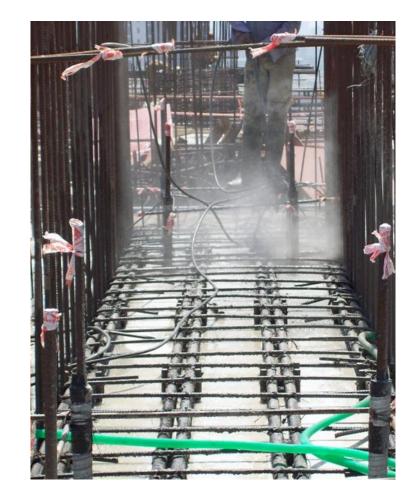
- Consistency was not a problem
- Expected strengths enabled gravity column size reduction
- Enabled early pre-stressing
- SCC ensured integral concrete

EXPERIENCE OF HIGH GRADE CONCRETE

- **PRECAUTIONARY POINTS**
- Extraordinary quality control in production and placement
- Segregation
- Admixture floating to top
- Heat of hydration
- Brittleness
- Bursting cube failure

EXPERIENCE OF HIGH GRADE CONCRETE

- PRECAUTIONARY POINTS
- Low E values
- Slurry too hard to chip at construction joints
- Could not afford mistakes or non-achievement of strength
- Extremely sturdy formwork



FOGGING MACHINE

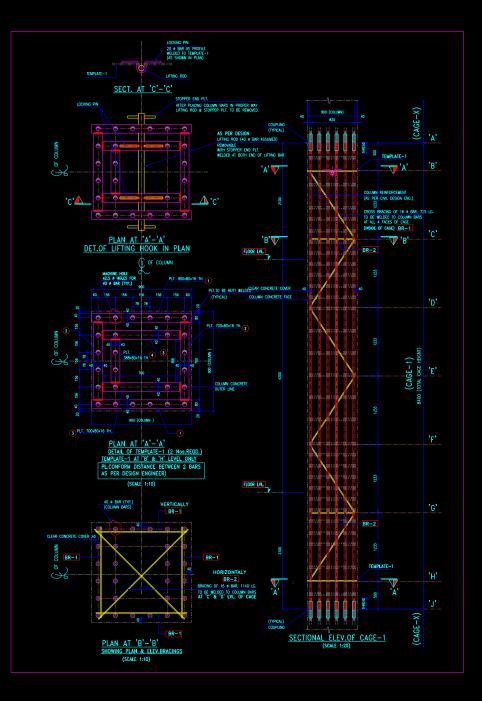
HUMIDITY CONTROL

Green Cutting of Concrete

Meva Modulur Formwork and Staging

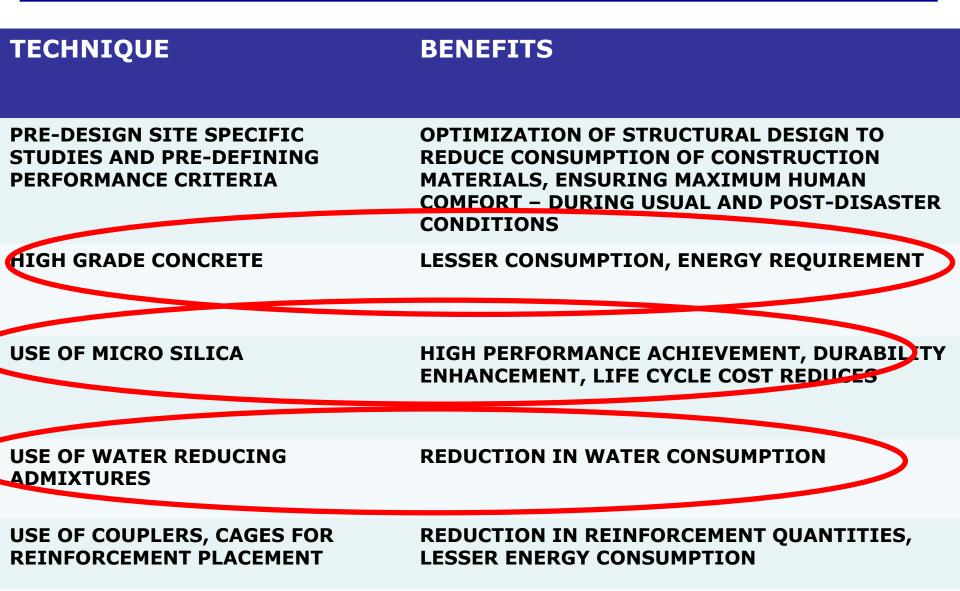
Slabs

Columns


Staging

ADMIXTURE SLURRY FLOATATION AT CONSTRUCTION JOINT

STRUCTURAL PERFORMANCE COMPARISION


PARTICULARS	DEFN	HEIGHT/DEF	TIME PERIOD	ACCN	REMARKS
	mm	ratio	sec	m/sec ²	
STATIC	374	775	9.893	8.82	LIFE SAFETY
ZONE III	160	1811	10.06	6.5	IMMEDIATE OCCUPANCY
ZONE IV	241	1205	10.06	9.75	IMMEDIATE OCCUPANCY
SITE SPECTRA	113	2565	10.06	4.61	OPERATIONAL
WIND CODE	221	1311	10.06	8.82	IMMEDIATE OCCUPANCY
WIND TUNNEL	248	1169	10.06	10.05	LIFE SAFETY
E – VALUE	214	1354	9.893	8.82	IMMEDIATE OCCUPANCY

Surface Finish from Pre-engineered Formwork

MODERN TECHNOLOGIES LINKED TO SUSTAINABILITY CONCEPT

MODERN TECHNOLOGIES LINKED TO SUSTAINABILITY CONCEPT

TECHNIQUE	BENEFITS
USE OF DAMPERS	ENHANCING THE PERFORMANCE OF THE BUILDING, REDUCTION IN STRUCTURAL SIZES LEADING TO REDUCED CONSUMPTION OF CONSTRUCTION MATERIALS
HEAVY DUTY EQUIPMENT	SHORTER CONSTRUCTION TIME, LESS ESTABLISHMENT COST, CONSUMPTION OF POWER AND WATER
USE OF CURING COMPOUNDS	REDUCTION IN WATER CONSUMPTION DURING CONSTRUCTION
USE OF LIGHT WEIGHT MATERIALS	REDUCTION IN MEMBER SIZES, ECONOMY, REDUCED CONSUMPTION

ESTIMATED MATERIAL CONSUMPTION

ELEMENT	CONCRETE	REINF	KG/CU.M	
Foundation	15350	3500	228	
Retaining Walls	2406	500	208	
Slabs and Beams below Girder				
Columns below Girder	62347	10721	172	
Parapets, stairs, moats above girder				
Girders	12852	5000	389	
Slabs and Beams above Girder	63509	10925	172	
Columns above Girder	34388	10316	300	
Parapets, stairs, moats above girder (assumed)	6350	635	100	
Structures above terrace (assumed)	1000	100	100	
Total	198200	41697	210	

CURRENT STATUS

